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This paper focusses on the simulation of the neural network of the Caenorhabditis

elegans living organism, and more specifically in the modeling of the stimuli applied

within behavioral experiments and the stimuli that is generated in the interaction of the

C. elegans with the environment. To the best of our knowledge, all efforts regarding

stimuli modeling for the C. elegansare focused on a single type of stimulus, which is

usually tested with a limited subnetwork of the C. elegansneural system. In this paper,

we follow a different approach where we model a wide-range of different stimuli, with

more flexible neural network configurations and simulations in mind. Moreover, we focus

on the stimuli sensation by different types of sensory organs or various sensory principles

of the neurons. As part of this work, most common stimuli involved in behavioral assays

have been modeled. It includes models for mechanical, thermal, chemical, electrical and

light stimuli, and for proprioception-related self-sensed information exchange with the

neural network. The developed models have been implemented and tested with the

hardware-based Si elegans simulation platform.
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1. INTRODUCTION

Themain aim of simulation of living organisms is the accelerated and controlled testing of different
hypotheses on the organism’s behavior. This is often necessary when looking for the cause and
treatment of an organism’s malfunction, either holistically or focusing on its sub-system. In-silico
solutions provide tools that help to validate them before testing them on real living organisms in
in-vivo experiments.

The in-silico technologies develop toward a complete multi-scale model of the organism, being
the ultimate goal of a full virtual organism simulation. Step by step, multi-scale modeling will yield
to a complete understanding of all aspects of physiology, from genomes to organs (Walpole et al.,
2013).

Developing a complete and a realistic multi-scale model, however, is too complex and hardly
feasible at the moment. It is due to the complexity of each organism and the little known interplay
of the organism’s parts at and between different scales, but also due to its high demand on
computational resources that would allow for a viable simulation.

For now, most works focus on individual aspects of physiology and in this paper, the stimulus
perception will be elaborated. In this study, the virtual simulation of the Caenorhabditis elegans (C.
elegans) nematode is considered, being one of the simplest organisms with respect to the size of its
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FIGURE 9 | Stimuli that can be computed before simulation starts, because they do not depend on the position of the C. elegans. (A) Mechanosensation in the tail

(neurons PLML and PLMR), changing the application angle (from top of the worm going around the transversal plane in counter-wise manner). (B) Stimuli received by

three neurons that are located in different lenths of the nematode (AVM, PVM and PLML) when the worm is touched along the body. (C) Bell-shaped stimulus received

by any mechanosensory neuron when tapping the plate that contains the C. elegans. (D) Global temperature change received by any thermosensory neuron. Default

temperature is set to 20◦C. Temperature changes in time from 15 to 25◦C. After that, the environment temperature keeps the last defined value. (E) Electrical charge

stimulus transferred to all neurons in the form of a train of electrical impulses. (F) Stimuli input registered by neurons located at different lengths (OLQDR, AVFR, AS4,

VA8, PVPL, and PLMR) when light impulse events, with increasing magnitude, are applied at different locations from the head to the tail.

Figure 10A shows the stimuli transferred to neurons ADFL
(in the head of the worm) and PHAL (in the tail). As expected,
every line is 0 during the whole experiment except for the
time the worm is in a specific quadrant. At this moment,
the signal is equal to the concentration of that chemical in
that quadrant. Specifically, the sequence of the concentration
sensed by the neurons is: biotin for ADFL and PHAL; NaCl
barrier for ADFL and biotin for PHAL; etc. From the plot it
can be seen that the chemical sensing in ADFL precedes those
sensed in PHAL that is due to the positioning of the neurons
(located in head and tail, respectively) as well as the motion of

the worm induced from the biotin region toward the ethanol
region. The speedup of the changes in the second half (i.e.,
entering the ethanol region) are attributed to the acceleration
of the worm’s motion that stabilizes after a while since the CPG
initiation.

In the second test for chemosensation, the nematode crosses a
gradient generated by a drop of chemical. Figure 10B shows the
stimulus received by the neuron IL1R during such experiment.
A combination of a sinusoidal pattern and a Gaussian-like
curve function can be observed. The sinusoidal pattern is due
to the locomotion of the worm and the Gaussian-like curve
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FIGURE 10 | Stimuli computed during simulation, because they depend on the position and the shape of the worm at each moment. (A) Quadrants assay: the worm

crosses quadrants and barriers and consequently neurons receive concentration of different chemicals. (B) Chemosensation received by the neuron IL1R when the

worm crawls across a gradient generated with a chemical drop. (C) Thermosensation stimulus in BDUR, CEPDL, and PHBL when the C. eleganscrosses a lineal

thermal gradient. (D) Proprioception stimulus in AS3 when the locomotion of the nematode is activated with a CPG. (E) Mechanosensation induced by collision

between an obstacle and the head of the worm. Neurons in the head (BDUL and BDUR) are activated and the stimulus was not received by the neurons that are not

located in the head (LUAL and LUAR).

represents how the worm first approaches the source of the
stimulus and moves away after that. Again, the acceleration
of the worm can be observed in the faster decrease of the
signal.

To test thermosensation, a linear gradient was set in the plate
where C. eleganscrawls. The temperature in one end was 20
and 25◦C in the other end and the worm crawled toward the
coolest part. In Figure 10C, we see that the computed thermal
stimuli in neurons BDUR, CEPDL, and PHBL decreases as
the animal advances. The velocity of the worm was increased
during the experiment to check that temperature decreases in a
similar way.

Regarding proprioception, the CPG was activated in a worm
isolated from any other force (friction or gravity). As expected,
a periodic sinusoidal-like pattern (Figure 10D) was obtained
for proprioception sensing in all related neurons (only AS3 is
presented for simplicity).

Finally, a collision test was carried out. While the animal was
crawling, as induced by the CPG, a rigid obstacle was placed
close to left side of the head. The stimulus received by neurons
of different parts of the body was measured. As shown in the
Figure 10E, the stimulus was not received by the neurons that
are not located in the head (LUAL and LUAR). The neurons of
the left part (BDUL) are stimulated more intensely.
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4. DISCUSSION

As analyzed in section 1, researches in the literature that try to
simulate the C. elegansbehavior responding to a certain stimulus
use a model of a unique stimulus to activate a restricted neural
network. On the contrary, in this paper we have focussed on
modeling a wide repertoire of stimuli types, based on the main
behavioral experiments carried out with the C. elegansworm
(Hart, 2005).

Specifically, the following types of stimuli have been
modeled:

• Direct touch, with a Gaussian-like force spread in the
surrounding area.

• Plate tap, similar to direct touch but not localized in a specific
area.

• Chemical quadrants and osmotic ring, considering the
concentration at current position of the nematode.

• Static and dynamic drop tests, with Gaussian-like spread of the
chemical concentration in the space.

• Global temperature transferred to all neurons of the worm.
• Different temperature gradients, taking into account the

current position of the animal.
• Electric shocks, with periodic box functions.
• Light pulses, with box functions.
• Self shape sensing, with a simplification of the shape of the

body.
• Muscle stretch sensing, considering the current length of each

muscle.

Moreover, unlike other works that have been analyzed, this work
takes the morphology of the sensory organs of C. elegansinto
consideration when transferring the stimuli signals to the sensory
neurons of the worm.

The models have been implemented within the Si elegans
platform, in which the user can simulate different kinds of
behavioral experiments. Such platform has been used to test
the correctness of the models. Nevertheless, stimuli modeling

approach and its implementation presented in this paper may
provide stimuli input for C. elegans behavioral experiments for
various neuronal simulation systems, such as jLems (jLEMS,
2017) or pyLEMS (Vella et al., 2014).

The work has been focused only on the natural input that
the neurons will receive during the simulation and not in
the processes that convert such input into neural activation.
The latter is out of the scope of this work and can be
consulted e.g., in Nossenson and Messer (2010), where a model
that generates neural activity spikes from the natural input is
considered.

Future work includes modeling and implementation of
natural inputs that are affected by the nematode itself. For
instance, the concentration of a certain chemical in an area can
be affected by the crawling of the animal in that area. Methods
like Smooth Particle Hydrodynamics can be useful for these cases,
but efficiency of the method has to be taken into account if
close-to-real-time performance is desired.
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