
A comparative study between RadViz and Star Coordinates

Manuel Rubio-Sánchez, Laura Raya, Francisco D�́az and Alberto Sanchez

Abstract —RadViz and star coordinates are two of the most popular projection-based multivariate visualization techniques that ar-
range variables in radial layouts. Formally, the main difference between them consists of a nonlinear normalization step inherent
in RadViz. In this paper we show that, although RadViz can be useful when analyzing sparse data, in general this design choice
limits its applicability and introduces several drawbacks for exploratory data analysis. In particular, we observe that the normalization
step introduces nonlinear distortions, can encumber outlier detection, prevents associating the plots with useful linear mappings, and
impedes estimating original data attributes accurately. In addition, users have greater �e xibility when choosing different layouts and
views of the data in star coordinates. Therefore, we suggest that analysts and researchers should carefully consider whether RadViz's
normalization step is bene�cial regarding the data sets' characteristics and analysis tasks.

Index Terms —RadViz, Star coordinates, Exploratory data analysis, Cluster analysis, Classi�cation, Outlier detection.

Many datavisualizationmethodscanbeunderstoodasdimension-
ality reductiontechniques,which de�ne proceduresthatmapnumer-
ical multivariatedataonto a low-dimensionalobservable display in
order to representthem graphically. In this paperwe evaluateand
comparetwo well-known and closely relateddimensionalityreduc-
tion projectiontechniquesthatarrangeanddepictnumericalvariables
in radiallayouts,while representinghigh-dimensionaldatasamplesas
pointson low-dimensionalplots. The �rst methodis starcoordinates
(SC) [19, 20], which produceslinear mappingsby computinglinear
combinationsof a setof low-dimensionalvectorsthatrepresentradial
axes.Thesecondtechniqueis RadViz [14, 13, 7], which insteadgen-
eratesnonlinearmappingsof high-dimensionaldataonto a planeby
modelinga physicalspringsystemwherethevariablesconstitutean-
chorpoints.Thesetechniqueshavebeenappliedin �elds asdiverseas
bioinformatics,engineering,�nance, or nutrition; andhave provento
beusefulfor severalexploratorydataanalysistasks,includingcluster
structurediscovery, outlier andtrenddetection,featureextraction,or
decisionsupporttasks.

Despitethedifferentdesignmotivationsfor themethods,formally,
themaindifferencebetweenthemconsistsof a normalizationstepin-
herentin RadViz, whichintroducesnonlinearities.Thecontributionof
this paperis anobjective comparisonof bothmethodswhenperform-
ing diverseexploratoryanalysistasks,makingspecialemphasisonthe
effectof RadViz'sextranormalizationstep.In particular, weshow that
it canbeusefulwhenthedatais sparse,i.e.,whendatasamplescontain
only afew (related)attributesthatareconsiderablylargerthantherest.
However, in generalit canhamperseveral exploratoryanalysistasks
sinceit: (1) introducesdistortionsin theplotsthataffect thedistances
betweenthe mappedpoints, (2) canencumberoutlier detection,(3)
preventscomputingcon�gurationsof radialaxesthatleadto powerful
andwell-known linearplots,whichcanbeobtainedautomatically, and
canbeusefulfor taskssuchasclassi�cationor featureextraction,and
(4) impedesestimatingoriginal dataattributesaccurately. Moreover
basicSCvisualizationsmayevenprovide betterresultsthansophisti-
catedapproachesdevelopedfor RadViz. Finally, we arguethatusers
haveagreater�e xibility whenchoosingdifferentlayoutsandviewsof
thedatain SC.

Therestof thepaperis organizedasfollows. Section1 providesan
overview of the relatedwork. Section2 describesSC andRadViz in
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detail, andshows the equivalencebetweenthem. Section3 analyzes
theeffect on theplots causedby thenonlinearstepin RadViz, while
Sec.4 analyzestheability of themethodsto detecttwo typesof out-
liers. Section5 showstheusefulnessof obtainingautomaticcon�gura-
tionsof axisvectorsin SCassociatedto well-known linearmappings,
while Sec.6 examineshow userscanrecover attribute valuesin SC
andRadViz. Finally, Sec.7 comparesthemethods'plotswhenusing
arbitrarylayouts,andSec.9 presentsadiscussion.

1 RELATED WORK

RadViz is arguablythearchetypeof radialprojectionapproaches.Nu-
merouspapershave proposedideasin orderto enhanceor extendthe
method(see[15, 37, 36, 28, 33]). Theresearchhasoften focusedon
selectinglayoutsfor the anchorpointsautomaticallyin orderto per-
form or optimizetaskssuchasclusteror classseparation,or outlier
detection(see[26, 3, 21, 1, 5, 34]). Theseapproachesproposecom-
plex heuristicsin order to accomplishthe analysistasks,sometimes
posingNP-hardproblems(e.g., for sortingthe anchorpointsaround
a circle). Finally, researchershave alsoproposedto combineRadViz
with otherapproaches[4, 29], andhave selectedit to representradial
methodswhencomparingandanalyzingdifferenttypesof visualiza-
tion approaches[12, 30, 42].

RegardingSC, researchhasalsofocusedon automatically�nding
con�gurationsof axisvectorsin orderto accomplishor optimizedata
analysistasks(see[35, 41, 38]). Again, theproposedapproachestyp-
ically rely on heuristicsthatcanbecomplex or time consuming.Re-
centlyit hasbeenshown thatSCplotscanbeenhancedby con�guring
theaxesin orderto produceorthogonalprojections[23]. In addition,
when the data is centeredit is possibleto recover original dataat-
tributesmoreaccurately, which altogetherleadsto morefaithful rep-
resentationsof thedata[32].

Dimensionalityreductionmethodscanbe categorizedaslinear or
nonlinear. Lineartechniquesmaphigh-dimensionalpointsontoa low-
dimensionalspaceby a simplematrix-vectorproduct,andhave been
studiedextensively. Popularmethodsinclude principal component
analysis(PCA) [17], statisticalbiplots [9], linear discriminantanal-
ysis (LDA) [27], or projectionpursuit[18]. In addition,over thepast
decade,researchersin the �eld of machinelearninghave developed
powerful metric learningmethodsfor classi�cation, but which also
provide linearmapsthatcanbeappliedin orderto representthedata
in 2 or 3 dimensions[10, 43]. Wewill show in Sec.5 thatit is possible
to selectaxisvectorsin SCin orderto reproducetheseplots.

In contrast,modernnonlineartechniquesconstructsophisticated
mappings in an attempt to representdata that lies on a lower-
dimensionalitymanifold as faithfully as possible(see[39, 31, 25]).
Thesemethodstake into accountrelationshipsbetweenthedatasam-
ples (e.g., building a neighborhoodgraph) to generateuseful low-
dimensionalrepresentations.However, unlike thesemethods,RadViz
de�nes a generalnonlinearoperationthatdoesnot considerrelation-
shipsbetweenthedata.Thus,its mappingis essentiallydifferent,and



is usedfor otherpurposes.

2 DESCRIPTION OF THE METHODS

Thissectionbrie�y summarizesSCandRadViz (introducingthemain
notationusedthroughoutthepaper),anddescribestheconditionsun-
derwhich they areequivalent.

2.1 Star coor dinates
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Fig. 1. Equivalence between SC and RadViz. Let f vig denote the axis
vectors of a SC plot, shown in (a), as well as the set of anchor points of
a RadViz model, illustrated in (b). The low-dimensional representation p
of some data sample x with nonnegative attributes in RadViz is the same
as that of x=(1Tx) (i.e., x normalized so that the sum of its elements is
1) in SC, where 1 is the vector of all ones.

Starcoordinatesgenerateslinearmappingsfrom ann-dimensional
dataspaceonto a lower m-dimensionalobservablespace(m � 3) in
orderto representthedatagraphically. In particular, it constructsplots
throughasetof m-dimensionalvectorsvi , for i = 1; : : : ;n, with acom-
monorigin point thatrepresentradialaxes,wherevi is associatedwith
the i-th datavariable(seeFig. 1a). The low-dimensionalembedding
p 2 Rm of a datasamplex 2 Rn is simply a linear combinationof
thevectorsvi , wherethelinearcoef�cients correspondto thevariable
attributesof x. Formally:

p = x1v1 + x2v2 + � � � + xnvn = VTx; (1)

whereV is then� m matrix whoserows arethevectorsvi . Theinter-
pretationof theaxisvectorsis straightforward: theorientationdeter-
minesthedirectionin whichavariableincreases,andthelengthspec-
i�es theamountof contributionof aparticularvariablein theresulting
visualization,giventhatall variableshave a similar scaling.Notethat
themappingis linearsinceit consistsof amatrix-vectorproduct.

2.2 RadViz

RadViz implementsa physical springmodelmetaphor. Similarly to
SC, it usesa setof m-dimensionalvectorsvi , for i = 1; : : : ;n, which
de�ne anchorpoints of n springs. These,in turn, are connectedto
thelow-dimensionalrepresentationp of somedatasamplex 2 Rn (see
Fig.1b). Theattributesof x, whichmustbenonnegative,determinethe
springs'stiffness,andthelocationof p is suchfor whichthesumof the
springforcesequals0 (i.e., thepoint liesatanequilibriumposition).

Formally, RadViz generatesnonlinearprojectionsaccordingto:

p =
å n

i= 1xivi

å n
i= 1xi

; (2)

wherethe datavaluesxi mustbe nonnegative (they areusuallynor-
malizedso that therangeof eachvariableis the [0;1] interval). Note
thatthemethod'snonlinearitystemsfrom thetermin thedenominator.
Lastly, the zerovectoris mappedonto the centerof mass(i.e., mean
or barycenter)of theanchorpoints.

Themappingentailsthefollowing properties:(1) thelargerxi is in
comparisonwith therestof values,thecloserp will be to theanchor
pointvi , (2) sampleswhosedataattributesareall thesamegetmapped

ontothecenterof massof theanchorpoints,(3) thepointp is aconvex
combinationof theanchorpointsvi for whichxi > 0,andwill therefore
lie insidetheirconvex hull, and(4) if thei-th elementof asampleis the
only nonzeroone,thenit will bemappedontovi (while sampleswith
only two nonzeroattributesgetmappedto a pointon theline segment
betweentheassociatedanchorpoints).Theconversestatementof this
lastpropertyis oneof themostimportantfeaturesof RadViz regarding
its usefulness.In orderto ensureit, all of the anchorpointsmustbe
differentandform partof their convex hull. Therefore,in practicethe
anchorpointsaretypically arrangedaroundacircle.

2.3 Equiv alence between RadViz and star coor dinates

Theonlydifferencebetweenbothmappingsresidesin thedenominator
in (2) [28], exceptthatRadViz requiresthedatato benonnegative. In
the following propositionwe formally describethe conditionsunder
whichSCandRadViz areequivalent(seeFig. 1).

Proposition 1. Let V be then� m matrix whoserowsconsistof the
anchor pointsof a RadViz model,aswell as theaxisvectors of a SC
plot. Themappingp 2 Rm of ann-dimensionaldatapoint x 6= 0, with
nonnegativeentries,is identicalfor bothmethodsif thedatais prepro-
cessedin SCsothat thesumof its elementsis equalto 1.

Proof. Thepreprocessingconsistsof dividing eachattributeof a data
sampleby thesumof all of theattributes.Thus,dueto (1) themapping
in SCis:

pSC = VT
� x

1Tx

�
=

å n
i= 1xivi

å n
i= 1xi

= pRadViz;

dueto (2), where1T is the(row) vectorof all ones.

Thus,thenormalizationstepinherentin RadViz producesnonlinear
mappingsof thedataonto theobservabledisplay, wherewe cancon-
siderthatit appliesSC's linearmapping,but to samples(with nonneg-
ative entries)previously projectednonlinearlyonto the unit (n � 1)-
simplex (1Tx = 1). Regardingthe0 vector, SCmapsit ontotheorigin
of thelow-dimensionalspace,while RadViz projectsit ontothecenter
of massof theanchorpoints(in practiceit is oftentheorigin aswell,
sincetheanchorsareusuallyarrangeduniformly aroundacircle).

3 NONLINEARITY AND DISTORTIONS

Thegeometricalpropertiesof RadViz have beenstudiedin depthre-
centlyin [7]. Wenow presentaseriesof new resultsrelatedto RadViz
andSC,focusingon theirdifference.

3.1 Line segments and convex sets

In RadViz, line segmentsin the high-dimensionaldata spaceare
mappedontoline segmentson theplots[7], which,by de�nition, im-
plies that convex setsalsogetmappedontoconvex sets.This is also
truefor SCsinceit generateslinearmappings,aswe show in thefol-
lowing result.

Proposition 2. In SClines in the data space(Rn) are mappedonto
lines,or a singlepoint (in thedegeneratecase),in theobservabledis-
play (Rm).

Proof. Let L = f x+ a uja 2 Rg representa line in thedataspacewith
somearbitrarydirectionu 2 Rn, which passesthroughsomearbitrary
point x 2 Rn. Additionally, let V 2 Rn� m representa matrix of axis
vectorsin SC.Thelinearmappingof L giventheSCmodelis:

f VT(x+ a u)ja 2 Rg = f VTx+ a VTuja 2 Rg = f p+ a w)ja 2 Rg;

which is a line in theobservabledisplaywith directionw 2 Rm, that
passesthroughp 2 Rm. If u 2 N (VT), whereN denotesnullspace,
thenw = 0 andthe line would getmappedonto thesinglepoint p =
VTx.

Moreover, since SC doesnot introducenonlinearities,the low-
dimensionalembeddingsof uniformly distributedpointsalonga line
segmentin thedataspacewill alsobeuniformly distributedon theSC
plots,asweshow in thefollowing result.
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Fig. 2. Nonlinearities in RadViz. In (a) line segments are mapped onto
line segments in both SC and RadViz. In SC points uniformly distributed
along a line segment in the data space are mapped onto (light orange)
points also uniformly distributed along a line segment on the display.
However, this does not occur in RadViz, where (dark blue) points are
concentrated towards an endpoint of the line segment. In (b) concentric
circles are transformed into concentric ellipses when using SC. How-
ever, in RadViz the ellipses are no longer concentric. The plot also
shows the mappings of points arranged uniformly on the largest con-
centric circle. The example uses 6 variables, where the anchor points
(RadViz), or endpoints of the axis vectors (SC), represented by the dark-
est dots, are arranged in a regular con�gur ation.

Proposition 3. In SCpointsuniformly distributedalong a line seg-
mentin the data space(Rn) are mappedonto pointsalso uniformly
distributedalonga line segment,or a singlepoint (in thedegenerate
case),in theobservabledisplay(Rm).

Proof. Let V 2 Rn� m representa matrix of axisvectorsin SC.Also,
let x;y 2 Rn representtheendpointsof alinesegmentin thedataspace,
whichwecande�ne asa x+ (1� a )y, for 0 � a � 1.

If VTx = VTy = p then all of the points in the line segmentare
mappedontop, sinceVT

�
a x+ (1� a )y

�
= VTy = p.

Otherwise,pointsuniformlydistributedalongthelinesegmentfrom
x to y will be mappedto pointsalsouniformly distributedalongthe
line segmentfrom the low-dimensionalrepresentationsof x andy in
SCif andonly if:

VT
�
a x+ (1� a )y

�
= qVTx+ (1� q)VTy ) a = q;

which is truein SC,since:

VT
�
a x+ (1� a )y

�

= a VTx+ (1� a )VTy = qVTx+ (1� q)VTy , a = q:

Thus, ignoring the degeneratecases,the shapeof distributionsof
pointsalonga line segmentis preservedundertheSCmapping.How-
ever, in RadViz uniformly distributedpointsalonga line segmentin
the dataspaceareno longermappedonto pointsalsouniformly dis-
tributedalonga line segmentin theobservabledisplay, aswe show in
thefollowing result.

Proposition 4. In RadViz points uniformly distributed along a line
segmentin thedataspace(Rn) are not mappedontopointsalsouni-
formlydistributedalonga linesegmentin theobservabledisplay(Rm).

Proof. Let V 2 Rn� m representa matrix of anchorpointsin RadViz.
Also, let x andy bepointsin Rn. Pointsuniformly distributedalong
the line segmentfrom x to y will bemappedto pointsalsouniformly
distributedalongtheline segmentfrom thelow-dimensionalrepresen-
tationsof x andy in RadViz if andonly if:

VT

�
a x+ (1� a )y

1T(a x+ (1� a )y)

�
= qVT

� x
1Tx

�
+ (1� q)VT

�
y

1Ty

�

) a = q:

Multiplying bothsidesof the�rst equalityby (1Tx)(1Ty) weobtain:
�

a (1Tx)
a (1Tx) + (1� a )(1Ty)

�
(VTx)(1Ty)

+
�

(1� a )(1Ty)
a (1Tx) + (1� a )(1Ty)

�
(VTy)(1Tx)

= q(VTx)(1Ty) + (1� q)(VTy)(1Tx);

which is satis�edif andonly if:

q =
a 1Tx

a 1Tx+ (1� a )1Ty
:

Thus,a 6= q in general.

This createsnonlineardistortionssinceit concentratesthemapped
pointstowardsoneof theendpoints(seeFig. 2a). Theresultingplots
canbemisleading,sincetherelativedistancesbetweenthedatapoints
arealtered.Figure2b shows theeffectwhenmappingasetof concen-
tric circles,whichroughlyillustrateshow atwo-dimensional(intrinsic
dimensionality)clusterin thedataspaceis mappedontothedisplayin
RadViz. Theplot shows a similar effect asin Fig. 2a, by mapping16
datapointsarrangeduniformly on thelargestconcentriccircle.

3.2 Cluster representation

Accordingto [6], thevisual interpretationof theclustersis moredif-
�cult in RadViz thanin SC.In orderto backup this claim we present
examplesthatshow theeffectof thenonlinearitiesintroducedby Rad-
Viz whenplottingclusters.

Figure3 shows RadViz andSCmappingsof a multivariatenormal
distribution in R6. In (a) theclusterof mappedpointsin theRadViz
plot doesnot follow a normaldistribution. This canbevisually tested
with theQ-Q plot in (b). In particular, notethat for multivariatenor-
mal distributionsthe squaredMahalanobisdistancesfrom the points
to their meanfollow a c 2

m distribution (with m degreesof freedom,
wherem= 2 is thedimensionalityof thedata).Thus,wehave plotted
thequantilesof theseMahalanobisdistanceswith respectto thetheo-
reticalquantilesof the c 2

2 distribution. It is clearthat thedistribution
of Mahalanobisdistanceshasheavier tails, which explainswhy sev-
eralpointsontheRadViz plot lie farawayfrom thecluster. In practice
thesepointscouldbemisleadingsincethey couldbemistakenfor out-
liers,or for samplesbelongingto adifferentcluster. Alternatively, the
SCplot in (c) showsanormallydistributedcluster. In thiscase,it must
benormallydistributed,sinceanaf�ne transformationof a multivari-
atenormalis alsonormallydistributed.Thus,theassociatedQ-Q plot
in (d) showspointslinedupalongastraight45� line.

RadViz's mappingalso tendsto clump embeddedpointscloseto
theorigin [7]. Fig. 4 comparestheaveragedistancefrom anembed-
dedpoint to the origin in RadViz andSC, for 106 randomlychosen
datapoints in [0;1]n, and regular con�gurationsof axis vectorsand
anchorpoints (with kvik = 1). Theseaveragedistancesdecreaseas
the numberof variablesincreasesin RadViz, while they increasein
SC,asshown in (a). Nevertheless,sinceanalystscanzoomin on the
plots, the relative clumpingof pointscanbe analyzedby comparing
theshapesof thedistributionsof distancesto theorigin. Thegraphic
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Fig. 3. Mappings of 1000 samples drawn from a multivariate normal dis-
tribution in R6. The plot in (a) corresponds to RadViz's mapping, where
several points appear far away from the cluster, and could be misinter-
preted as outliers. In (b) we have used a Q-Q plot to test whether the
distribution of mapped points is normal. In this case, the graph clearly
indicates that the mapped cluster does not follow a normal distribution.
Instead, the SC plot in (c) does (and must, since the mapping is linear)
show a normally distributed cluster. Thus, the points on the associated
Q-Q plot in (d) appear along a straight 45� line.

in (b) shows line histogramsof thesedistancesfor bothmethodsusing
6 and100variables.For alow numberof variablestheclumpingeffect
is morepronouncedin RadViz, sincethedistribution is moreskewed
to theleft. However, theshapesof thedistributionsareverysimilaras
n increases.
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Fig. 4. Analysis of the clumping of points towards the origin in RadViz
and SC, for regular con�gur ations of variables. The average distance of
a point to the origin in the display decreases as the number of variables
increases in RadViz, while it increases in SC, as shown in (a). The plot
also includes the mean � one standard deviation (dashed lines). The
graphic in (b) shows line histograms of the distances for both methods
using 6 and 100 variables. The clumping effect is more pronounced in
RadViz, but the shapes of the distributions are very similar for a large
number of variables.
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Fig. 5. Cluster size preservation in SC. A 3-dimensional toy data set
described in [28] containing two ball-shaped clusters with equal radii
and 200 points is shown in (a). The RadViz plot in (b) shows the clusters
with different sizes, while in the SC plot in (c) the clusters only differ in
their location, but not in their size.

In RadViz theappearanceof a clusterin the low-dimensionalplot
notonlydependsonits shapeandsize,butalsoonwhereit is locatedin
thedataspace.In particular, thecloserit lies to theorigin, thelargerit
will appearonthedisplay. Thisdoesnotoccurin SCsinceit produces
linearmappings,asweshow in thefollowing result.

Proposition 5. Let C1 be any particular setof data samplesin the
dataspaceRn, andletC2 = f x+ ajx 2 C1g, for somearbitrary a 2 Rn

(i.e.,C1 afterapplyingsometranslationa). Additionally, let V 2 Rn� m

representa matrix of axisvectors in SC.Thelow-dimensionalembed-
dingsof C1 andC2 on theSCplot will beidenticalup to a translation
determinedby thevectorVTa.

Proof. Thesetof low-dimensionalembeddedpointsof C1 is f VTxjx 2
C1g, while thecorrespondingsetof mappedpointsfor C2 is f VT(x +
a)jx 2 C1g = f VTx+ VTajx 2 C1g.

Figure5 showsanexamplewith atoy datasetusedin [28] (thesup-
plementalmaterialincludesanotherexample). It containstwo ball-
shapedclustersin R3 of radius0:1, eachwith 200points,asshown in
(a). Thedarker oneis centeredneartheorigin at (0.1,0.1,0.1),while
thelighteroneis centeredat (0.5,0.2,0.8). In RadViz thedarkerclus-
ter appearslarger thanthe lighter one,sinceit is locatedcloserto the
origin in thedataspace,asillustratedin (b). In ordertoavoid thisissue,
aswell astheclusteroverlap,[28] proposesto normalizetheattribute
valuesof thedatain theinterval [a;1], for somesuitablea > 0. How-
ever, this heuristicis datadependentanddoesnot solve the problem
entirely. Additionally, sincethe normalizationstepin RadViz essen-
tially eliminatesthe informationregarding the (L 1) distancefrom a
datasampleto the origin, [28] proposesto adda third dimensionto
the plots containingthe Euclidean(L 2) distancefrom the sampleto
the origin. Note, however, that simply usingSC solves theseissues
regardingclustersizeandoverlap,asshown in (c).

3.3 Sparse data

RadViz hasbeenusedsuccessfullyin �elds suchas bioinformatics
or biomedicine,whereit is importantto visualizethemostexpressed
attributes(e.g., in microarraygeneexpressiondata)of datasamples
(see[13, 26, 33]). Its main advantageconsistsof the ability to map
sparsedatasamplescloseto anchorpoints,andnon-sparsedataclose
to theorigin. In this context we referto sparsedataassuchfor which
oneof theattributesvalues(or a few if their anchorpointsareclose)
is considerablygreaterthantherest,in whichcaseRadViz wouldmap
thepointcloseto thecorrespondinganchor. This typeof datacanalso
be createdby proceduressuchas data�attening, wherecategorical
variablesaredecomposedinto setsof binaryattributes(see[37]).

Figure6 comparesRadViz (a) andSC(b) regardingtheir ability to
detectsparsedata. Theplotsshow themappingsof randomlygener-
ateddatain [0;1]10, andsparsedata(throughlighterandlargercolored
dots).In theexample,thesparsedataconsistof sampleswhereoneat-
tributevalue(in particular, theoneassociatedwith thedarker anchor
point or axisvector)is 20 timeslargerthanmaximumvalueof there-
mainingattributesof thesample.In SCthesparsedatais plottedclose
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Fig. 6. Usefulness of RadViz for visualizing sparse data. The examples
consist of a RadViz (a) and SC (b) plot of data in [0;1]10 (1000 darker
dots), and sparse data (200 lighter and larger dots). The sparse sam-
ples contain one attribute value (in particular, the one associated with
the variable represented with a darker anchor point or axis vector) that
is at least 20 times larger than the rest of attributes of the sample. Note
that it is easier to distinguish these sparse data in RadViz.

to the tip of the correspondingaxis vector, but non-sparsedatamay
alsobelocatedin thatregionof theplot. Thus,it is easierto detectthe
sparsedatain RadViz, sincethemappedsparsepointsappearfaraway
from non-sparsedata.

Lastly, if the samplesonly contain one nonzerovalue, then SC
would depict the datamore faithfully thanRadViz. In this casethe
mappedpointswould lie exactlyonanaxis,wherethey couldbehigh-
lighted,andanalystscouldrecover thenonzerovaluevisually. In par-
ticular, it would be thedistancefrom themappedpoint to theorigin,
normalizedby the lengthof the axis vector. In RadViz, the mapped
point would be locatedat thecorrespondinganchor, andit would not
bepossibleto recover theoriginalnonzerovalue.

4 OUTLIER DETECTION

Evaluatingthe capabilityof a visualizationmethodto detectoutliers
is nontrivial. On theonehand,thereexist severalde�nitions for out-
liers (see[28]). On the other hand,the binary decisionof whether
or not a sampleis anoutlier is oftensubjective, andmay requiredo-
mainknowledge[6]. In thispaperweconsideracommonde�nition in
which anoutlier is a datasamplethat lies (probabilistically)far from
therestof thedata.Note,however, thatotherauthorshaveuseddiffer-
entde�nitions whenusingRadViz or SC.For instance,anoutlier can
be understoodasa datasamplethat is misclassi�edby classi�cation
methods[21], or that is not consistentlygroupedwithin thesameset
by differentclusteringalgorithms[37].

In this paperwe evaluatetheprobabilityof detectingtwo typesof
outliersusingRadViz andSC,which areeasilydetectedby classical
statisticalvisualizations. In theseexperimentswe have usedsetsof
points sampledfrom a multivariatestandardnormal distribution, to
which we have addedanoutlier. In orderto ensurethat thenormally
distributeddatadid notcontainpointsthatcouldbeinterpretedasout-
liers, we usedthe fact that the squaredMahalanobisdistancesfrom
the points to their meanfollow a c 2

n distribution (seeSec.3.2). In
particular, we only considereddatasetsfor which the largestsquared
Mahalanobisdistancewaslessor equalto thelargesttheoreticalquan-
tile.

The�rst typeof outlier consistedin modifyingone(randomlycho-
sen)attribute valueof a sample(alsoselectedat random)in the data
set,by assigningto it anextremevalue. We consideredtwo different
valuesdependingonwhetherthevariableswerepreprocessedin order
to lie in the [0,1] interval. If so,we choseanextremevalueof 1000.
Thus,afterthenormalizationthechosenattribute'svaluewas1 for the
outlier, while for therestof thedatasamplesthevaluewasvery close
to 0. However, whenthedatawerenotpreprocessedtheextremevalue
was10. Note that the extremevaluesareexceedinglyunlikely, and
would thereforebeeasilydetectedin aboxplot or histogram.

For thesecondtypeof outlierweincludedanadditionalsamplethat
would have a low likelihoodof belongingto thenormallydistributed
dataset,but wouldnotcontainextremevalues.In particular, wechose

0 10 20 30 40
0

5

10

15

20

25

30

35

40

PSfragreplacements

c 2
10 theoreticalquantiles

D
at

a
qu

an
til

es

Fig. 7. Generation of a low likelihood data point, illustrated through a
Q-Q plot. Firstly, N samples are drawn from a standard multivariate nor-
mal in an n-dimensional space, where the largest squared Mahalanobis
distance to their mean is less or equal to the largest theoretical quantile
(F � 1

n (1� 1=(2N)) = 25:19, for N = 100and n = 10), where Fn denotes the
cumulative distribution function of a c 2

n distribution (with n degrees of
freedom). Finally, we generated an outlier, with entries in [-3,3], such
that the squared Mahalanobis distance to the mean of the normal data
was F � 1

n (1� 1=(100N)) , which is 35:56, for N = 100and n = 10. Note that
the outlier is clearly visible on the Q-Q plot.

a datasample,with attribute valuesinside the interval [� 3;3], such
thattheprobabilityof observinganotherdatasamplewith lower like-
lihood was 1=(100� N), whereN is the cardinality of the normally
distributeddataset (roughly speaking,we would needto generatea
dataset100 timeslarger in orderto �nd a rarersample).This sam-
ple is easilydetectedin Q-Qplotslike thoseshown in Fig. 3. Figure7
showstheprocessof generatingthenormaldataandthelow likelihood
datapoint.

Lastly, given the SC or RadViz plots, we modeledtwo strategies
userscouldtake whensearchingfor outliers.The�rst oneconsistsof
consideringthe farthestpoint from thecenterof massof themapped
points.Thesecondoneinvolves�nding thepoint thatis farthestfrom
any othermappedpoint. Note that both strategiescanbe simulated
computationally, which allowedus to generatea largenumberof ex-
periments.Figure8 shows the averageprobabilitiesof detectingthe
introducedoutlier usingboth strategies, over 105 trials, considering
regular con�gurationsof axis vectorsandanchorpoints(the supple-
mentalmaterialincludesresultson randomcon�gurations,which are
similar, but poorer). The normal dataset containedN = 100 sam-
ples (resultswereessentiallythe samefor otherchoicesof N). We
comparedresultsfor SC,Radviz,andthevariantdescribedin [28] for
outlier detection,denotedasRadViz'. The graphsshow that outliers
generatedthroughextremevaluesaredetectedmorefrequentlyusing
SC.The lower performanceof RadViz canbedueto theeffect illus-
tratedin Fig. 3a,wheresomepointsmaybemisinterpretedasoutliers,
andto therestrictionthatforcesall mappedpointsto lie insidethecon-
vex hull of theanchorpoints(wheredistancesarebounded).It is also
apparentthattheprobabilitiesdecreaseasthenumberof variablesin-
creases,sincethesimultaneouseffect of all thevariablescanhidethe
outlier. Lastly, for low likelihoodoutlierstheprobabilitiesarelow and
verysimilarfor thethreeapproaches.Thus,theradialprojectionmeth-
odsarenot mappingtheoutlier far enoughfrom therestof thepoints.
Theseexamplesillustratethe importanceof selectingmultiple views
(i.e.,con�gurationsof axisvectorsor anchorpoints)whenperforming
outlierdetectionwith (radial)projectionmethods.

5 L INEAR MAPPINGS

Anotherbene�t of SCoverRadViz is thepossibilityto selectcon�gu-
rationsof axisvectorsin orderto reproduceany linearmapping.This
haspracticalbene�tssinceit enablesanalyststo automaticallygener-
ateusefulplots, andvisualizethe con�gurationsof axis vectorsthat
leadto them. For example,theaxisvectorscanbechosenin orderto
reproducepopularlinear transformationssuchasPCA,LDA, biplots,
andsoforth. Thesehavebeenusedsuccessfullyin orderto performor
optimizetaskssuchasdistancepreservation, classor clustersepara-
tion, correlationapproximation,etc. Thefollowing subsectionsshow
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Fig. 8. Average outlier detection probabilities. In (a-d) the results involve
detecting the outlier with an extreme value, while in (e) and (f) the task
consist of �nding the sample with low likelihood. The search for an
outlier can involve calculating the distance to the center of mass (mean)
of the plotted points, or to every other point in order to compute the
(maximum) distance to the nearest neighbor. In (a) and (b) the extreme
value of a single entry is 1000, while the data is later preprocessed to
lie in the [0,1] interval. With SC it is easier to detect the outlier, but
the performance drops quickly for both radial methods. In (c) and (d)
we use the original (standardized) data, and the incorporated extreme
value is 10. For RadViz we additionally shifted the data (by subtracting
the minimum attribute values) in order to make them nonnegative. In
this case the performance of the methods improves considerably, where
the average probabilities are again larger for SC. Finally, in (e) and (f)
we also preprocessed the data to lie in the [0,1] interval (we obtained
similar results with the original data). The performance is poor, and
almost identical, for both methods. The results correspond to basic SC
plots, Radviz, and the variant in [28] for outlier detection, denoted as
RadViz'.

several usesof this idea. In contrast,the inherentnonlineartransfor-
mationin RadViz impedesreproducingtheseusefulplots.

5.1 Classi�cation and feature selection

In practiceit canbe dif�cult to manuallyselecta setof axis vectors
in SC,or anchorpointsin RadViz, in orderto separateclassesin the
observabledisplay. A commonapproachin the literatureconsistsof
building regularcon�gurations,andpermutingtheattributesin order
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Fig. 9. Plots for a regular arrangement of the 4 variables of the Iris
data set in RadViz (a), and SC (b). The lighter classes appear highly
overlapped, especially in RadViz, since the nonlinear step maps them
onto the same region of the 3-dimensional simplex (1Tx = 1). Thus, there
does not exist a con�gur ation of anchor points that will separate those
classes in RadViz.

to obtaindifferentviews of the data(see[3, 38]). However, the or-
deringof variablesin visualizationsis complex andtime-consuming,
sincethe problemsto be solved are NP-hard,and thereforerequire
heuristics,evenfor amoderatenumberof attributes(see[2, 5]). More-
over, regularcon�gurationsareoften insuf�cient in orderto obtaina
satisfactoryseparationof classeson theplots.Figure9 shows RadViz
(a)andSC(b) plotsfor regulararrangementsof thefour variables(and
150samples)of theIris datasetincludedin theUCI MachineLearn-
ing Repository[8]. TheSC plot separatesthe lighter coloredclasses
betterthantheanalogousversionin RadViz, but thereneverthelessex-
ists a clear overlap betweenthem. Other orderingsdo not separate
theclasseseither(seethesupplementalmaterial).In this examplethe
high overlap in RadViz is dueto its nonlinearstep,which mapsthe
lighter coloredclassesontothesameregion of theunit 3-dimensional
simplex, asshown in (c). Thus,no matterwhich con�gurationof an-
chorpointswe choose,thoseclasseswill alwaysbeoverlappingin a
RadViz plot.

However, whenworking with SC, analystscantake advantageof
the numerousdimensionalityreductionmethodsthat generatelinear
mappingsin orderto separatea setof classesoptimally, accordingto
somecriterion. The matricesassociatedwith thosemappingscanbe
computedautomatically, andspecifythesetof axisvectorsto beused.
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Fig. 10. Optimal con�gur ations in SC for separating the classes of the
Iris data set. In (a) the choice of axis vector produces the LDA plot,
while in (b) the plot corresponds to the LMNN mapping.
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Fig. 11. Automatic con�gur ation of 7129 genes (the gray lines represent
the axis vectors) in a SC plot related to LDA. In the example, the data
samples of two classes of leukemia (11 cases of AML and 27 of ALL)
are clearly separated, and concentrated around two different points.

In SCit is straightforwardto obtaintheseaxisvectors.Considersome
linear transformationfrom Rn to Rm de�ned by someknown matrix
A, i.e., p = Ax. Dueto (1) we cansimply setV = AT in orderto re-
producethemapping.Thus,theaxisvectorsaresimply thecolumns
of A. Figure10 shows the con�gurationsof axis vectorsthat gener-
ate (a) the LDA plot, and(b) the mappingassociatedwith the large
margin nearestneighbor(LMNN) [43] method,for the Iris dataset.
Bothplotsseparatethelighterclassesconsiderablybetterthanregular
con�gurations(seeFig. 9).

In Fig. 11 we appliedLDA to the Geneexpressiondatasetused
in [11], andanalyzedin [13] with RadViz, in order to separatetwo
classesof acutemyeloid leukemia (AML) and acutelymphoblastic
leukemia(ALL). Theresultingaxisvectors(V) areobtainedautomat-
ically throughthe well-known statisticalprocedure,and the data is
clearly separatedon the plot, wherethe classesare mappedaround
two differentpoints.

In certaintasksanalystsmaydecideto simplify a visualizationby
discardingthevariablesthatdo not have a relevantcontribution to it.
In SC short axis vectorsconstitutepossiblecandidatesto be elimi-
nated,sincetheeffect of a variablein a plot dependson thelengthof
its axisvector. For instance,whenthesetof axisvectorsis obtained
throughthelinearmappingcorrespondingto amethodusedfor classi-
�cation, it is possibleto performvisualfeatureselectionby discarding
variableswith shortvectors,sincethesecould be the leastdiscrimi-
native. Figure12a shows thecon�guration of axisvectorsassociated
with theLDA plot for theWinedatasetin [8], whichcontains13vari-
ablesand178samples.Sincethe threeclassesof wine areseparated
well on theplot, it maybepossibleto reducethesetof variableswhile
still avoiding classoverlaps.In (b) we have discardedsix of theorig-
inal variables(andreproducedtheLDA plot for theremainingseven),
which hadtheshorteraxisvectorsin (a). Note,however, that if there
exist overlapsbetweenclasses,shortvectorscouldplayarelevantrole
in the plot. This occursin Fig. 10a with the variable“sepal length”
(notethatits axisvectoris orientedin themaindirectionthatseparates
thelighter classes),or “sepalwidth” in (b).

Anotherapproachdesignedfor RadViz is the“classdiscrimination
layout” (CDL) algorithm[26], whichgroupssimilarvariablesinto sec-
torsaccordingto thet-statistic.Otherproceduresusequalitymeasures
thatindicateclass(or cluster)separationin orderto selectthelocations
or orderingsof theanchorpoints.For instance,theapproachdescribed
in [1] usesanimageprocessingalgorithmin orderto separateclasses.
In Fig. 13 we show the resultof applyingthesemethodsto theWine
dataset (the anchororderingin (b) is describedin [1]). In order to
evaluateclassseparationwehavefollowedtheapproachin [21], which
consistsof computingtheleave-one-outclassi�cationperformanceof
a K-nearestneighborsclassi�er, for K = 5 (this choicegenerallypro-
videdoptimalscores).Theerror ratefor theSCplot relatedto LDA,
shown in Fig. 12a, is not only muchlower, but the axis vectorsalso
revealtheimportanceof thevariablesin theplot.

Lastly, Fig.14showsanotherclassi�cationexampletakenfrom [1],
whichusestheOlives[45] datasetcontaining5728-dimensionalsam-
ples that arecategorizedin 9 classes.The error rateof a K-nearest
neighborclassi�er (for K = 5), appliedto theoptimalsectorpermuta-
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Fig. 12. Visual feature selection with SC. In (a) the con�gur ation of axis
vectors produces the LDA plot for the Wine data set. The least discrimi-
native variables tend to have shorter vectors, and represent candidates
to be discarded when performing feature selection. In (b) a reduced set
of seven variables also separates the data well.

tion of the CDL algorithm,shown in (a), is 12:41%. Note that since
the datasetcontains9 variables,thereare8!=2 possiblesectorper-
mutations. Sinceour implementationin MATLAB r takes about4
secondsto evaluatetheclassi�cationperformanceof onepermutation
(measuredon an PC with an Intelr CoreTM i7-4712HQCPU, 2.30
GHz,and16GBof RAM), thesearchfor theoptimalpermutationtook
about22:4 hours. In addition, the error rate for the classseparation
algorithmin [1], in (b), is 17:13%(zoomed-in�gures areavailablein
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Fig. 13. RadViz class separation algorithms applied to the Wine data
set. The error rate of a K-nearest neighbor classi�er (for K = 5), applied
to the optimal sector permutation of the CDL algorithm shown in (a), is
13:46%. The analogous error rate for the class separation algorithm in
[1], shown in (b), is 4:49%. However, the error rate for the LDA plot in
Fig. 12a is reduced to 0:56%.



1

2

3

4

5

6

7

8

(a)

1

2

3

4

5

6

78

(b)

1

2

3

4

5

6

7

8

(c)

Fig. 14. Class separation algorithms applied to the Olives data set. The
error rate of a K-nearest neighbor classi�er (for K = 5), applied to the op-
timal sector permutation of the CDL algorithm for RadViz, shown in (a),
is 12:41%. The analogous error rate for the class separation algorithm
for RadViz in [1], shown in (b), is 17:13%. However, the combination of
NCA and LMNN for SC, shown in (c), can decrease the error rate to
6:29%.

sepal length

sepal width

petal length
petal width

Fig. 15. Con�gur ation of axis vectors in SC (for the Iris data set) that
allows to estimate correlation coef�cients as cosines of the angles be-
tween axis vectors.

thesupplementalmaterial).
Finally, aninterestingpropertyaboutlinearmapsis thatthey canbe

usedconsecutively. In Fig. 14c we have usedneighborhoodcompo-
nentanalysis(NCA) [10] to mappointsonto a 2-dimensionalspace,
generatinga2� 8 matrixA. AfterwardswehaveappliedLMNN [43]
on thecorrespondingmappingthatprovidesa 2� 2 matrix B. Thus,
the columnsof matrix BA canbe usedto constructa SC plot. This
approachcanreducethe error considerably. In 20 randomtrials the
averageerror ratewas7:57%, wherethe minimum was6:29%. The
combinationof bothapproachesusing[24], togetherwith theclassi�-
cationperformanceevaluation,took 4:14 secondson average.There-
fore, this approachis considerablymoreef�cient thansearchingfor
permutations.

Lastly, notethatothernonlineardimensionalityreductionmethods
couldseparatethedataevenbetter. However, thelinearmethodspro-
ducematricesfrom which we canextract theSC axisvectors,which
canbeusefulfor understandingtherole of the initial variablesin the
�nal visualization.

5.2 Biplots

Linearmapsareusefulfor otheranalysistasks.We concludethis sec-
tion with an exampleinvolving statisticalbiplots. Note that an idea
oftenusedin visualizationsbasedon radialaxesconsistsof arranging
similar attributesnearby[2, 3]. For example,it is possibleto select
theaxisvectorsin SC,or theanchorpointsin RadViz, in orderto ap-
proximatecorrelationcoef�cients betweenthedatavariables.Thiscan
becarriedout with theaid of classicalstatisticalbiplots,which build
linear mappingsthat depictrepresentationsof both datasamplesand
variablesin a singlegraphic. In particular, they factorthe bestrank-
2 approximationof thedata(accordingto theFrobeniusmatrix norm)
into two matricesthatrepresentthepointsandvariables.Let USWT be
thesingularvaluedecompositionof theN � n datamatrix,whereN is
thecardinalityof thedataset.By choosingV asthe�rst two columns
of SWT, theresultingSCplot canbeusedto estimatecorrelationcoef-
�cients betweenvariables,asthecosinebetweentheir respective axis
vectors. Figure15 shows this plot for the Iris dataset,while Tab. 1
shows thedifferentcorrelationsandcosinevalues,whicharesimilar.

6 DATA ATTRIBUTE ESTIMATION

The mappingsde�ned by SC and RadViz are not one-to-onesince
many high-dimensionalsamplescanbeprojectedonto thesamelow-
dimensionalpoint. Thus,whenthe samplesarerepresentedasdots,
informationis inevitably lost dueto thedimensionalityreductionpro-
cess. In this regard, anotherbene�t of SC over RadViz is relatedto
theability to recover original high-dimensionalattributevaluesmore
accurately, simply from thevisualelementsin theplots. In particular,
theaxesin SCcanbe labeled,similarly to statisticalbiplots, in order
to allow usersto estimatevaluesby projectingembeddedpointsor-
thogonallyontothem.It canbeshown that,in orderto obtainoptimal
estimatesusingthisapproach,thedatashouldbecentered,andmatrix
V shouldbeorthogonal[32]. Figure16 shows anexampleusingfour
standardizedvariablesof theUS breakfastcerealdatasetusedin [44]
(it contains77 samplesbut we discardedthe threethat have missing
values). In the example,the con�guration of axis vectorsproduces
thePCA plot for the four attributes,whereunhealthy cerealsarerep-
resentedby pointson the right sideof the plot, andhealthy oneson
theleft. Thecaloriccontentfor aparticularcerealcanbeestimatedby

Table 1. Correlation coef�cients (r) and cosines between the axis vec-
tors in Fig. 15. Note the similarity between the values.

Variablei Variable j r cos(vi ;v j )
sepallength sepalwidth -0.1094 -0.0541
sepallength petallength 0.8718 0.9237
sepallength petalwidth 0.8180 0.9357
sepalwidth petallength -0.4205 -0.4324
sepalwidth petalwidth -0.3565 -0.4029
petallength petalwidth 0.9628 0.9995
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Fig. 16. Data attribute estimation in SC by projecting points orthogo-
nally onto labeled axes. In the example, the caloric content of breakfast
cereals can be estimated through projections onto the labeled axis. Ad-
ditionally, the size of the points is related to the quality of the estimates
(samples for which the estimates are accurate appear as larger dots).
The color bar is associated with caloric content.

projectingits correspondingpoint onto the labeledaxis. Lastly, it is
possibleto show the quality of theestimatesby meansof the sizeof
thepoints.

Thepreviousapproachonly requiresmodifyingtheaxisvectorsand
centeringthedata.In contrast,thenormalizationstepin RadViz trans-
forms the dataso that the sumof its elementsis 1, which obviously
eliminatesinformationaboutthe original attribute values. Thus, re-
gardlessof theplacementof theanchorpointsanddatatranslation,in
RadViz userscantry to comparewhetheranattributevalueis greater
for a samplethanfor another, but cannotestimateexactoriginal val-
ues.

Lastly, for any dimensionalityreductionmethodoneway to visual-
ize theexactattributevaluesconsistsof representingthemappedsam-
plesasglyphsor similar visualstructures(see[40]) insteadof points.
However, this canonly becarriedout effectively for a low numberof
variablesanddatasamples,sinceotherwisetheplotswould exhibit a
considerableoverlap.

7 ARBITRARY LAYOUTS

In SC,userscanarrangetheaxisvectorsinteractively in arbitrarylay-
outsin orderto searchfor datawith particularcharacteristics,cluster
structure,or outliers(see[20, 44]). However, theanchorpointsin Rad-
Viz areusuallyarrangedsothatall of themform partof their convex
hull. Althoughthis is notstrictly necessary, it is appropriatein orderto
analyzesparsedataeffectively. In addition,smallconvex hullsmaybe
problematic,sincethemappedpointsarealwayslocatedinsidethem.
Thus,we considerSC to be more�e xible regardinguserinteraction
andthenumberof layouts(i.e.,views of thedata)for thevariableson
theplots.

Figure17 shows RadViz visualizationsfor thedatasetusedin the
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Fig. 17. RadViz applied to the data set used in Fig. 16. In (a) the anchor
points are the same as in the SC plot. Their convex hull is small and
the ordering of the caloric content is degraded. In (b) the related regular
layout does not solve the problem.

SCplot in Fig. 16, whereall of theaxisvectorspoint to thesamehalf-
space(in part, becauseall of the variablesarepositively correlated,
which occursin many datasets).Note that it is usefulto arrangethe
variablesin thatmannerin SCin orderto characterizehealthy vs. un-
healthy cereals.However, it is dif�cult to accomplishthis effectively
in RadViz with thosefour variablessincepoints are pulled towards
verticesof the convex hull, which cannotall have similar directions.
Thus,it is not possibleto positiontheanchorsin orderto detectdata
sampleswith large(or small)valuesfor all attributes.In (a) theanchor
pointsvi arethesameasin theSCplot. TheresultingRadViz visual-
ization is considerablydifferent. On theonehand,theconvex hull is
particularlysmall. On theotherhand,theorderingof thecaloriccon-
tent,which wasapparentin the SC plot, is now degraded.In (b) we
haveupdatedtheanchorpointsin orderto form aregularlayout,while
preservingtheir relative orderingon the convex hull. In spiteof this
change,themappeddatapointsremainclearlyunorderedwith respect
to their caloriccontent.

8 CONCLUSIONS

ThispaperhascomparedSCandRadViz focusingon theeffectof the
latter's extra nonlinearnormalizationstep,which is the main differ-
encebetweenthem. We concludethat RadViz is especiallyadvanta-
geouswhenthedatais sparse,asin [13, 37]. However, we have pro-
vided new resultsshowing that its nonlinearitymay hamperseveral
otherexploratoryanalysistasks.

9 DISCUSSION

Regardingthedevelopmentof algorithms,many designedfor RadViz
canalsobe appliedto SC.For instance,quality measureshave been
usedto accomplishtaskssuchasclassseparationin RadViz [1]. Since
thesemeasuresaregeneralthey canbeappliedto SCaswell (andto
otherdimensionalityreductionmethods).Therefore,whendevelop-
ing algorithmsfor RadViz, we recommendconsideringwhetherthey
wouldalsobeappropriatefor SC.

Regardingperformance,SC andRadViz areequivalentsinceboth
computethemappingof adatasamplein Q(n) time(necessaryto cal-
culatethe productof a 2� n matrix timesan n-dimensionalvector).
Radvizalsorequirescalculatingthesumof theattributevaluesof the
samples,but thisdoesnotincreasethecomputationalcomplexity since
it is alsocarriedout in Q(n) time. Thus,for a datasetof cardinality
N, bothmethodsgenerateplotsin Q(Nn) time,andscalewell evenfor
very largedatasets.

A commonlimitation of both methodsis the dif�culty to recover
originaldataattributes,whichcanbemitigatedin SC(seeSec.6). Ad-
ditionally, while moderndimensionalityreductionmethodshave been
designedto capturenonlinearstructureof manifoldsin the data,the
methodsunderstudyarenot capableof carryingout this task.On the
onehand,SCis a linearmethod.On theother, RadViz de�nesa gen-
eralnonlinearmappingthatdoesnotconsidertheshapeor distribution
of thedata(i.e.,therelationshipsbetweenthesamples).Thus,it is also
incapableof revealingstructureof manifoldsin thedata.

Lastly, we have performedanobjective comparisonof RadViz and
SC basedon theoreticalanalysesandexperimentsin which we have
obtainedresultsautomatically, e.g., by modelinguserbehavior (see
Sec.4), or throughcomputationalprocedures(seeSec.5). In this re-
gard, we areplanningon performingusertestsasa future work; for
instance,in orderto analyzeinteraction,andtheability to detectcer-
tainpatterns,distributions,or correlations(see[16, 22]).
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