A comparative study between

RadViz and Star Coordinates

Manuel Rubio-Sanchez, Laura Raya, Francisco D’az and Alberto Sanchez

Abstract —RadViz and star coordinates are two of the most popul

ar projection-based multivariate visualization techniques that ar-

range variables in radial layouts. Formally, the main difference between them consists of a nonlinear normalization step inherent
in RadViz. In this paper we show that, although RadViz can be useful when analyzing sparse data, in general this design choice
limits its applicability and introduces several drawbacks for exploratory data analysis. In particular, we observe that the normalization
step introduces nonlinear distortions, can encumber outlier detection, prevents associating the plots with useful linear mappings, and
impedes estimating original data attributes accurately. In addition, users have greater e xibility when choosing different layouts and
views of the data in star coordinates. Therefore, we suggest that analysts and researchers should carefully consider whether RadViz's
normalization step is bene cial regarding the data sets' characteristics and analysis tasks.

Index Terms—RadViz, Star coordinates, Exploratory data analysis,

Cluster analysis, Classi cation, Outlier detection.
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Marny datavisualizationmethodscanbe understoodisdimension-
ality reductiontechniqueswhich de ne procedureshatmapnumer
ical multivariate dataonto a low-dimensionalobsenable display in
orderto representhem graphically In this paperwe evaluateand
comparetwo well-known and closely relateddimensionalityreduc-
tion projectiontechniqueghatarrangeanddepictnumericalvariables
in radiallayouts,while representingpigh-dimensionatlatasamplesas
pointson low-dimensionaplots. The rst methodis starcoordinates
(SC)[19, 20], which producedinear mappingsby computinglinear
combinationof a setof low-dimensionalectorsthatrepresentadial
axes. Thesecondechniquds RadMz [14, 13, 7], which insteadgen-
eratesnonlinearmappingsof high-dimensionatlataonto a planeby
modelinga physical springsystemwherethe variablesconstitutean-
chorpoints. Theseechnigue$ave beenappliedin elds asdiverseas
bioinformatics,engineering,nance, or nutrition; andhave provento
be usefulfor several exploratorydataanalysistasks,including cluster
structurediscovery, outlier andtrenddetection featureextraction,or
decisionsupporttasks.

Despitethe differentdesignmotivationsfor the methodsformally,
the maindifferencebetweerthemconsistof a normalizationstepin-
herenin RadMz, whichintroducesonlinearities Thecontrikution of
this paperis anobjective comparisorof bothmethodsvhenperform-
ing diverseexploratoryanalysigasks makingspecialemphasi®nthe
effectof Rad\Mz'sextranormalizatiorstep.In particular we shav that
it canbeusefulwhenthedatais sparsei.e.,whendatasamplesontain
only afew (related)attributesthatareconsiderablyargerthantherest.
However, in generalit canhampersereral exploratory analysistasks
sinceit: (1) introducedistortionsin the plotsthataffectthedistances
betweenthe mappedpoints, (2) can encumbemutlier detection,(3)
preventscomputingcon gurationsof radial axesthatleadto powerful
andwell-known linearplots,which canbeobtainedautomaticallyand
canbe usefulfor taskssuchasclassi cationor featureextraction,and
(4) impedesestimatingoriginal dataattributesaccurately Moreover
basicSCvisualizationamay even provide betterresultsthansophisti-
catedapproacheslevelopedfor RadMz. Finally, we arguethatusers
have agreatere xibility whenchoosingdifferentlayoutsandviews of
thedatain SC.

Therestof the paperis organizedasfollows. Sectionl providesan
overview of therelatedwork. Section2 describesSC andRad\z in
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detail, and shows the equivalencebetweenthem. Section3 analyzes
the effect on the plots causeddy the nonlinearstepin RadMz, while
Sec.4 analyzeghe ability of the methodgto detecttwo typesof out-
liers. Sections shavstheusefulnessf obtainingautomaticcon gura-
tions of axisvectorsin SCassociatedo well-known linearmappings,
while Sec.6 examineshow userscanrecorver attribute valuesin SC
andRadMz. Finally, Sec.7 compareshe methods'plotswhenusing
arbitrarylayouts,andSec.9 presenta discussion.

1 RELATED WORK

Rad\Mz is amuablythearchetypeof radial projectionapproachesNu-
merouspapershave proposeddeasin orderto enhanceor extendthe
method(see[15, 37, 36, 28, 33]). Theresearchasoftenfocusedon
selectinglayoutsfor the anchorpointsautomaticallyin orderto per
form or optimize taskssuchas clusteror classseparationpr outlier
detection(see[26, 3, 21, 1, 5, 34]). Theseapproacheproposecom-
plex heuristicsin orderto accomplishthe analysistasks,sometimes
posingNP-hardproblems(e.g., for sortingthe anchorpointsaround
acircle). Finally, researcherbave alsoproposedo combineRad\z
with otherapproache§4, 29|, andhave selectedt to representadial
methodswhencomparingand analyzingdifferenttypesof visualiza-
tion approachefl2, 30, 42].

Regarding SC, researcthasalsofocusedon automatically nding
con gurationsof axisvectorsin orderto accomplishor optimizedata
analysigtasks(se€[35, 41, 38]). Again,theproposedpproachesyp-
ically rely on heuristicsthatcanbe complex or time consuming.Re-
centlyit hasbeenshavn thatSCplotscanbeenhancedby con guring
the axesin orderto produceorthogonalprojectiong 23]. In addition,
whenthe datais centeredit is possibleto recover original dataat-
tributesmoreaccuratelywhich altogethedeadsto morefaithful rep-
resentationsf thedata[32].

Dimensionalityreductionmethodscanbe cateyorizedaslinear or
nonlinear Lineartechniquesnaphigh-dimensionapointsontoalow-
dimensionakpaceby a simple matrix-vectorproduct,andhave been
studiedextensiely. Popularmethodsinclude principal component
analysis(PCA) [17], statisticalbiplots [9], linear discriminantanal-
ysis(LDA) [27], or projectionpursuit[18]. In addition,over the past
decaderesearcherin the eld of machinelearninghave developed
powerful metric learning methodsfor classi cation, but which also
provide linear mapsthatcanbe appliedin orderto representhe data
in 2 or 3dimensiong 10, 43]. Wewill shav in Sec.5 thatit is possible
to selectaxisvectorsin SCin orderto reproducaheseplots.

In contrast,modernnonlineartechniquesconstructsophisticated
mappingsin an attempt to representdata that lies on a lower
dimensionalitymanifold as faithfully as possible(see[39, 31, 25]).
Thesemethoddake into accountrelationshipetweerthe datasam-
ples (e.g., building a neighborhoodgraph)to generateuseful low-
dimensionatepresentationd-owever, unlike thesemethodsRad\Mz
de nes a generalnonlinearoperationthat doesnot considerrelation-
shipsbetweerthe data. Thus,its mappingis essentiallydifferent,and



is usedfor otherpurposes.

2 DESCRIPTION OF THE METHODS

Thissectionbrie y summarize$SCandRad\Mz (introducingthemain
notationusedthroughouthe paper),anddescribeghe conditionsun-
derwhichthey areequialent.

2.1 Star coordinates
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Fig. 1. Equivalence between SC and RadViz. Let fv;g denote the axis
vectors of a SC plot, shown in (a), as well as the set of anchor points of
a RadViz model, illustrated in (b). The low-dimensional representation p
of some data sample x with nonnegative attributes in RadViz is the same
as that of x=(1"x) (i.e., x normalized so that the sum of its elements is
1) in SC, where 1 is the vector of all ones.

Starcoordinategeneratesinear mappingsfrom ann-dimensional
dataspaceonto a lower m-dimensionalobsenable space(m  3) in
orderto representhedatagraphically In particular it constructplots

monorigin pointthatrepresentadialaxes,wherev; is associategvith
thei-th datavariable(seeFig. 1a). The low-dimensionalembedding
p 2 R™ of a datasamplex 2 R" is simply a linear combinationof
thevectorsv;, wherethelinearcoefcients correspondo thevariable
attributesof x. Formally:

P= XVi+ XoVo+  + XV = VX; 1
whereV isthen mmatrixwhoserows arethevectorsvj. Theinter-
pretationof the axis vectorsis straightforvard: the orientationdeter
minesthedirectionin which avariableincreasesandthelengthspec-
i es theamountof contritution of a particularvariablein theresulting
visualizationgiventhatall variableshave a similar scaling.Notethat
themappingis linearsinceit consistf a matrix-vectorproduct.

2.2 RadViz
Rad\Mz implementsa physical spring model metaphar Similarly to

de ne anchorpoints of n springs. These,in turn, are connectedo
thelow-dimensionatepresentatiop of somedatasamplex 2 R" (see
Fig. 1b). Theattributesof x, whichmustbenonneative, determinghe
springs'stiffnessandthelocationof p is suchfor whichthesumof the
springforcesequald (i.e.,thepointlies atanequilibriumposition).
Formally, Rad\iz generatesonlinearprojectionsaccordingo:

_ ATgXivi,

P= S @
wherethe datavaluesx; mustbe nonngative (they are usually nor
malizedsothatthe rangeof eachvariableis the [0; 1] interval). Note
thatthemethods nonlinearitystemsfrom thetermin thedenominatar
Lastly, the zerovectoris mappedonto the centerof mass(i.e., mean
or barycenterpf theanchormoints.

Themappingentailsthe following properties:(1) thelargerx; is in
comparisorwith the restof values,the closerp will beto theanchor
pointv;, (2) samplesvhosedataattributesareall the samegetmapped

ontothecenterof massof theanchormoints,(3) thepointp is acorvex

combinatiorof theanchompointsv; for whichx; > 0, andwill therefore
lie insidetheircorvex hull, and(4) if thei-th elemenbf asampldsthe
only nonzeroone,thenit will be mappedontov; (while sampleswith

only two nonzeraattributesgetmappedo a pointon theline segment
betweerthe associatednchorpoints). The cornversestatemenof this

lastpropertyis oneof themostimportantfeaturef RadMz regarding
its usefulness.In orderto ensureit, all of the anchorpointsmustbe
differentandform partof their corvex hull. Thereforejn practicethe
anchomointsaretypically arrangedaroundacircle.

2.3 Equiv alence between RadViz and star coor dinates

Theonly differenceébetweerbothmappingsesidesn thedenominator
in (2) [28], exceptthatRad\Mz requiresthe datato be nonngative. In
the following propositionwe formally describethe conditionsunder
which SCandRad\z areequialent(seeFig. 1).

Proposition 1. LetV bethen m matrix whoserowsconsistof the
andor pointsof a Rad\z model,as well asthe axis vectos of a SC
plot. Themappingp 2 R™ of an n-dimensionatlatapointx 6 0, with
nonn@ativeentries,is identicalfor bothmethodsf thedatais prepro-
cessedn SCsothatthe sumof its elementss equalto 1.

Proof. The preprocessingonsistf dividing eachattribute of a data
sampleby thesumof all of theattributes. Thus,dueto (1) themapping
in SCis:

X é.-n: X Vi
=V — = =177 1 = .
Psc 1'% &% Praau
dueto (2), wherel' is the (row) vectorof all ones. O

Thus,thenormalizatiorstepinherentn RadMiz producesionlinear
mappingsof the dataontothe obserabledisplay wherewe cancon-
siderthatit appliesSC's linearmapping but to samplegwith nonney-
ative entries)previously projectednonlinearlyonto the unit (n 1)-
simplex (1'x = 1). Regardingthe 0 vector SC mapsit ontotheorigin
of thelow-dimensionabpacewhile Rad\iz projectsit ontothecenter
of massof the anchorpoints(in practiceit is oftenthe origin aswell,
sincetheanchorsareusuallyarrangediniformly arounda circle).

3 NONLINEARITY AND DISTORTIONS

The geometricapropertiesof RadMz have beenstudiedin depthre-
centlyin [7]. We now present seriesof new resultsrelatedto RadMz
andSC,focusingon their difference.

3.1 Line segments and convex sets

In Rad\Mz, line sggmentsin the high-dimensionaldata spaceare
mappedonto line sggmentson the plots[7], which, by de nition, im-
pliesthat corvex setsalsoget mappedonto corvex sets. This is also
truefor SCsinceit generatedinear mappingsaswe shaw in thefol-
lowing result.

Proposition 2. In SClinesin the data space(R") are mappedonto
lines,or a singlepoint (in the degenerte case),in theobservablalis-

play (R™.

Proof. LetL = fx+ auja 2 Rgrepresenaline in thedataspacewith
somearbitrarydirectionu 2 R", which passeshroughsomearbitrary
pointx 2 R". Additionally, let V 2 R" ™ representn matrix of axis
vectorsin SC.Thelinearmappingof L giventhe SCmodelis:

fVT(x+ au)ja 2 Rg= fV'x+ aV'uja 2 Rg= fp+ aw)ja 2 Rg;

which s aline in the obsenabledisplaywith directionw 2 R™, that
passeshroughp 2 R™ If u2 N (VT), whereN denotesullspace,
thenw = 0 andthe line would getmappedonto the single pointp =
VTx. O

Moreover, since SC doesnot introduce nonlinearities, the low-
dimensionalembedding®f uniformly distributed pointsalonga line
segmentin thedataspacewill alsobeuniformly distributedonthe SC
plots,aswe shaw in thefollowing result.
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Fig. 2. Nonlinearities in RadViz. In (a) line segments are mapped onto
line segments in both SC and RadViz. In SC points uniformly distributed
along a line segment in the data space are mapped onto (light orange)
points also uniformly distributed along a line segment on the display.
However, this does not occur in RadViz, where (dark blue) points are
concentrated towards an endpoint of the line segment. In (b) concentric
circles are transformed into concentric ellipses when using SC. How-
ever, in RadViz the ellipses are no longer concentric. The plot also
shows the mappings of points arranged uniformly on the largest con-
centric circle. The example uses 6 variables, where the anchor points
(RadViz), or endpoints of the axis vectors (SC), represented by the dark-
est dots, are arranged in a regular con gur ation.

Proposition 3. In SC pointsuniformly distributedalong a line seg-
mentin the data space(R") are mappedonto points also uniformly
distributedalong a line sggment,or a single point (in the degeneate
case),in theobservablelisplay(R™).

Proof. LetV 2 R" M represent matrix of axisvectorsin SC.Also,
letx;y 2 R" representheendpointof aline segmentin thedataspace,
whichwe cande neasax+ (1 a)y,for0 a 1.

If VIx = VTy = p thenall of the pointsin the line segmentare
mappedntop, sinceVT ax+ (1 a)y = V'y=p.

Otherwisepointsuniformly distributedalongtheline sgmentfrom
x to y will be mappedto pointsalsouniformly distributed alongthe
line segmentfrom the low-dimensionafrepresentationsf x andy in
SCif andonly if:

VT ax+ (1 a)y =qV'x+(1 qV'y) a=gq;
whichis truein SC,since:

VT ax+ (1 a)y

=aV'x+ (1 a)V'y=qgV'x+(1 qV'y, a=q:

O

Thus, ignoring the degeneratecasesthe shapeof distributions of
pointsalongaline sggmentis preseredunderthe SCmapping.How-
ever, in Rad\Mz uniformly distributed pointsalonga line sggmentin
the dataspaceare no longermappedonto pointsalsouniformly dis-
tributedalongaline sggmentin the obserabledisplay aswe shav in
thefollowing result.

Proposition 4. In RadViz points uniformly distributed along a line
se@mentin the dataspace(R") are not mappedonto pointsalso uni-
formlydistributedalonga line segmeniin theobservablalisplay(R™).

Proof. LetV 2 R" ™M represena matrix of anchorpointsin Rad\Mz.
Also, let x andy be pointsin R". Pointsuniformly distrioutedalong
the line sggmentfrom x to y will be mappedo pointsalsouniformly
distributedalongtheline segmentfrom thelow-dimensionatepresen-
tationsof x andy in Rad\z if andonly if:

. ax+ (1 a)y
I"(ax+ (1 a)y)

_ o X 7
=V gyt VT R

) a=q
Multiplying bothsidesof the rst equalityby (17x)(1"y) we obtain:

a(1x) -
a(l™)+ (1 a)(1lvy) (VH)(Ly)
(1 a)lly) (VTyY)(17X)

a(l™x)+ (1 a)(17y)
= q(VX)(1y)+ (1 g)(VTy)(1x);

whichis satis edif andonly if:

_ al’x )
9% arx+ (1 a)ly

Thus,a 6 q in general. O

This createsonlineardistortionssinceit concentratethe mapped
pointstowardsoneof the endpointyseeFig. 2a). Theresultingplots
canbemisleadingsincetherelative distancedbetweerthedatapoints
arealtered.Figure2b shavs theeffect whenmappinga setof concen-
tric circles,whichroughlyillustrateshow atwo-dimensiona(intrinsic
dimensionality)lusterin thedataspacas mappecdntothedisplayin
RadMz. The plot shaws a similar effect asin Fig. 2a, by mapping16
datapointsarrangediniformly onthelargestconcentriccircle.

3.2 Cluster representation

Accordingto [6], the visualinterpretatiorof the clustersis moredif-
cult in RadMz thanin SC.In orderto backup this claim we present
exampleghatshow the effect of thenonlinearitiedntroducedoy Rad-
Viz whenplotting clusters.

Figure3 shavs Rad\Mz and SC mappingsof a multivariatenormal
distribution in R®. In (a) the clusterof mappedpointsin the Rad\iz
plot doesnot follow a normaldistribution. This canbe visually tested
with the Q-Q plot in (b). In particulay notethatfor multivariatenor-
mal distributionsthe squaredvlahalanobigdistancesrom the points
to their meanfollow a ¢? distribution (with m degreesof freedom,
wherem= 2 is thedimensionalityof thedata). Thus,we have plotted
the quantilesof theseMahalanobiglistancesvith respecto thetheo-
retical quantilesof the c2 distribution. It is clearthatthe distribution
of Mahalanobigdistanceshasheavier tails, which explainswhy sev-
eralpointsontheRad\z plot lie faraway from thecluster In practice
thesepointscouldbemisleadingsincethey couldbemistalenfor out-
liers, or for sampledelongingto a differentcluster Alternatively, the
SChplotin (c) shavsanormallydistributedcluster In thiscasejt must
be normally distributed,sinceanaf ne transformatiorof a multivari-
atenormalis alsonormally distributed. Thus,the associate®-Q plot
in (d) shavs pointslined up alonga straight45 line.

RadMz's mappingalsotendsto clump embeddedoints closeto
the origin [7]. Fig. 4 compareghe averagedistancefrom anembed-
dedpoint to the origin in Rad\Miz and SC, for 10° randomlychosen
datapointsin [0;1]", and regular con gurationsof axis vectorsand
anchorpoints (with kvik = 1). Theseaveragedistanceslecreaseas
the numberof variablesincreasesn Rad\iz, while they increasein
SC,asshavn in (a). Neverthelesssinceanalystscanzoomin on the
plots, the relative clumping of pointscanbe analyzedoy comparing
the shapef the distributionsof distancego the origin. The graphic
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Fig. 3. Mappings of 1000 samples drawn from a multivariate normal dis-
tribution in R8. The plot in (a) corresponds to RadViz's mapping, where
several points appear far away from the cluster, and could be misinter-
preted as outliers. In (b) we have used a Q-Q plot to test whether the
distribution of mapped points is normal. In this case, the graph clearly
indicates that the mapped cluster does not follow a normal distribution.
Instead, the SC plot in (c) does (and must, since the mapping is linear)

show a normally distributed cluster. Thus, the points on the associated
Q-Q plotin (d) appear along a straight 45 line.
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in (b) shavsline histogramf thesedistancedor bothmethodausing
6 and100variables.For alow numberof variablesheclumpingeffect
is morepronouncedn RadMz, sincethe distribution is more skewed
to theleft. However, the shape®f thedistributionsarevery similaras
nincreases.
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Fig. 4. Analysis of the clumping of points towards the origin in RadViz
and SC, for regular con gur ations of variables. The average distance of
a point to the origin in the display decreases as the number of variables
increases in RadViz, while it increases in SC, as shown in (a). The plot
also includes the mean  one standard deviation (dashed lines). The
graphic in (b) shows line histograms of the distances for both methods
using 6 and 100 variables. The clumping effect is more pronounced in
RadViz, but the shapes of the distributions are very similar for a large
number of variables.
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Fig. 5. Cluster size preservation in SC. A 3-dimensional toy data set
described in [28] containing two ball-shaped clusters with equal radii
and 200 points is shown in (a). The RadViz plot in (b) shows the clusters
with different sizes, while in the SC plot in (c) the clusters only differ in
their location, but not in their size.

In RadMz the appearancef a clusterin the low-dimensionabplot
notonly depend®nits shapeandsize,but alsoonwhereit is locatedn
thedataspaceln particular thecloserit liesto theorigin, thelargerit
will appeaonthedisplay Thisdoesnotoccurin SCsinceit produces
linearmappingsaswe shaw in thefollowing result.

Proposition 5. Let C; be any particular setof data samplesn the
dataspaceR", andletC, = f x+ ajx 2 C,g, for somearbitrarya2 R"

(i.e.,C; afterapplyingsometranslationa). Additionally, letV 2 R" M

representa matrix of axisvectos in SC.Thelow-dimensionaémbed-
dingsof C; andC, onthe SCplot will beidenticalupto a translation
determinecythevectorVTa.

Proof. Thesetof low-dimensionaembeddegointsof C; isfVxjx 2
C19, while the correspondingetof mappedpointsfor C; is f VT(x +
a)jx 2 Cig= fV™x+ VTajx 2 C10. O

Figure5 shavs anexamplewith atoy datasetusedin [28] (thesup-
plementalmaterialincludesanotherexample). It containstwo ball-
shapectlustersn R3 of radius0:1, eachwith 200 points,asshavnin
(a). Thedarler oneis centerecheartheorigin at (0.1,0.1,0.1), while
thelighter oneis centeredat (0.5,0.2,0.8). In Rad\Mz thedarker clus-
ter appeardarger thanthe lighter one,sinceit is locatedcloserto the
originin thedataspaceasillustratedin (b). In orderto avoid thisissue,
aswell asthe clusteroverlap,[28] proposego normalizethe attribute
valuesof the datain theinterval [a; 1], for somesuitablea > 0. How-
ever, this heuristicis datadependenand doesnot solve the problem
entirely Additionally, sincethe normalizationstepin RadMz essen-
tially eliminatesthe informationregardingthe (L 1) distancefrom a
datasampleto the origin, [28] proposedo add a third dimensionto
the plots containingthe Euclidean(L ») distancefrom the sampleto
the origin. Note, however, that simply using SC solvestheseissues
regardingclustersizeandoverlap,asshavnin (c).

3.3 Sparse data

Rad\Mz hasbeenusedsuccessfullyin elds suchas bioinformatics
or biomedicine whereit is importantto visualizethe mostexpressed
attributes(e.g.,in microarraygeneexpressiondata)of datasamples
(see[13, 26, 33]). Its main adwvantageconsistsof the ability to map
sparsadatasamplescloseto anchorpoints,andnon-sparselataclose
to theorigin. In this context we referto sparsedataassuchfor which
oneof the attributesvalues(or a few if their anchorpointsare close)
is considerablygreaterthantherest,in which caseRadMz would map
thepointcloseto the correspondingnchor Thistypeof datacanalso
be createdby proceduresuchas data attening, where categorical
variablesaredecomposethto setsof binaryattributes(see[37]).
Figure6 comparesRad\Mz (a) andSC (b) regardingtheir ability to
detectsparseadata. The plots shov the mappingsof randomlygener
ateddatain [0; 119, andsparsalata(throughlighter andlargercolored
dots).In theexamplethe sparsedataconsistof samplesvhereoneat-
tribute value (in particular the oneassociatedvith the darker anchor
pointor axisvector)is 20 timeslargerthanmaximumvalueof there-
mainingattributesof thesample.In SCthesparsalatais plottedclose
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Fig. 6. Usefulness of RadViz for visualizing sparse data. The examples
consist of a RadViz (a) and SC (b) plot of data in [0;1]1° (1000 darker
dots), and sparse data (200 lighter and larger dots). The sparse sam-
ples contain one attribute value (in particular, the one associated with
the variable represented with a darker anchor point or axis vector) that
is at least 20 times larger than the rest of attributes of the sample. Note
that it is easier to distinguish these sparse data in RadViz.

to the tip of the correspondingxis vector but non-sparselatamay
alsobelocatedin thatregion of theplot. Thus,it is easietto detectthe
sparsalatain RadMz, sincethemappedsparseointsappearar avay
from non-sparselata.

Lastly, if the samplesonly containone nonzerovalue, then SC
would depictthe datamore faithfully thanRadMz. In this casethe
mappedoointswouldlie exactly onanaxis,wherethey couldbehigh-
lighted,andanalystscould recover the nonzerovaluevisually. In par
ticular, it would be the distancefrom the mappedpoint to the origin,
normalizedby the length of the axis vector In RadMz, the mapped
point would be locatedat the corresponding@nchor andit would not
be possibleto recover the original nonzerovalue.

4 OUTLIER DETECTION

Evaluatingthe capability of a visualizationmethodto detectoutliers
is nontrivial. On the onehand,thereexist severalde nitions for out-
liers (see[28]). On the other hand, the binary decisionof whether
or nota sampleis an outlier is often subjectve, andmay requiredo-
mainknowledge[6]. In this papetwe consideracommonde nition in
which anoutlier is a datasamplethatlies (probabilistically)far from
therestof thedata.Note,however, thatotherauthorshave useddiffer-
entde nitions whenusingRad\Mz or SC. For instanceanoutlier can
be understoodasa datasamplethatis misclassi edby classi cation
methodg21], or thatis not consistentlygroupedwithin the sameset
by differentclusteringalgorithms[37].

In this paperwe evaluatethe probability of detectingtwo typesof
outliersusingRad\z and SC, which are easilydetectedoy classical
statisticalvisualizations. In theseexperimentswe have usedsetsof
points sampledfrom a multivariate standardnormal distribution, to
which we have addedan outlier. In orderto ensurethatthe normally
distributeddatadid not containpointsthatcould beinterpretedasout-
liers, we usedthe fact that the squaredMahalanobisdistancesrom
the points to their meanfollow a c? distribution (seeSec.3.2). In
particular we only considerediatasetsfor which the largestsquared
Mahalanobiglistancevaslessor equalto thelargesttheoreticaguan-
tile.

The rst typeof outlier consistedn modifying one(randomlycho-
sen)attribute value of a sample(alsoselectecat random)in the data
set,by assigningo it an extremevalue. We consideredwo different
valuesdependingnwhetherthevariablesverepreprocesseih order
to lie in the[0,1] interval. If so,we chosean extremevalueof 1000.
Thus,afterthenormalizatiorthechoserattribute's valuewas1 for the
outlier, while for therestof the datasampleghe valuewasvery close
to 0. However, whenthedatawerenot preprocessethe extremevalue
was 10. Note that the extremevaluesare exceedinglyunlikely, and
would thereforebe easilydetectedn abox plot or histogram.

For thesecondypeof outlierweincludedanadditionalsamplethat
would have a low likelihoodof belongingto the normally distributed
dataset,but would not containextremevalues.In particular we chose
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Fig. 7. Generation of a low likelihood data point, illustrated through a
Q-Q plot. Firstly, N samples are drawn from a standard multivariate nor-
mal in an n-dimensional space, where the largest squared Mahalanobis
distance to their mean is less or equal to the largest theoretical quantile
(F, X1 1=(2N)) = 25:19, for N = 100and n= 10), where F, denotes the
cumulative distribution function of a ¢?2 distribution (with n degrees of
freedom). Finally, we generated an outlier, with entries in [-3,3], such
that the squared Mahalanobis distance to the mean of the normal data
was F, 1(1 1=(100N)), which is 3556, for N = 100and n= 10. Note that
the outlier is clearly visible on the Q-Q plot.

a datasample,with attribute valuesinside the intenal [ 3;3], such
thatthe probability of observinganotherdatasamplewith lower like-
lihood was 1=(100 N), whereN is the cardinality of the normally
distributed dataset (roughly speakingwe would needto generatea
dataset100timeslargerin orderto nd ararersample). This sam-
pleis easilydetectedn Q-Q plotslike thoseshavn in Fig. 3. Figure7
shavstheproces®f generatinghenormaldataandthelow likelihood
datapoint.

Lastly, giventhe SC or Rad\Mz plots, we modeledtwo strateies
userscouldtake whensearchindor outliers. The rst oneconsistsof
consideringhe farthestpoint from the centerof massof the mapped
points. The secondneinvolves nding the pointthatis farthestfrom
ary othermappedpoint. Note that both stratgies canbe simulated
computationallywhich allowed usto generate large numberof ex-
periments. Figure 8 shavs the averageprobabilitiesof detectingthe
introducedoutlier using both stratejies, over 10° trials, considering
regular con gurationsof axis vectorsand anchorpoints (the supple-
mentalmaterialincludesresultson randomcon gurations,which are
similar, but poorer). The normal dataset containedN = 100 sam-
ples (resultswere essentiallythe samefor other choicesof N). We
comparedesultsfor SC,Radviz,andthevariantdescribedn [28] for
outlier detection,denotedasRad\Mz'. The graphsshav thatoutliers
generatedhroughextremevaluesaredetectednorefrequentlyusing
SC. The lower performanceof Rad\Mz canbe dueto the effect illus-
tratedin Fig. 3a, wheresomepointsmaybemisinterpretedsoutliers,
andto therestrictionthatforcesall mappedointsto lie insidethecon-
vex hull of theanchorpoints(wheredistancesrebounded)lt is also
apparenthatthe probabilitiesdecreasasthe numberof variablesin-
creasessincethe simultaneouffect of all the variablescanhide the
outlier. Lastly, for low likelihoodoutliersthe probabilitiesarelow and
verysimilarfor thethreeapproachesThus,theradialprojectionmeth-
odsarenot mappingthe outlier far enoughfrom therestof the points.
Theseexamplesillustrate the importanceof selectingmultiple views
(i.e.,con gurationsof axisvectorsor anchormoints)whenperforming
outlier detectionwith (radial) projectionmethods.

5 LINEAR MAPPINGS

Anotherbene t of SCover Rad\z is the possibilityto selectcon gu-
rationsof axisvectorsin orderto reproduceary linearmapping.This
haspracticalbene tssinceit enablesanalystgo automaticallygener
ate usefulplots, andvisualizethe con gurationsof axis vectorsthat
leadto them. For example,the axis vectorscanbe chosenin orderto
reproducepopularlineartransformationsuchasPCA, LDA, biplots,
andsoforth. Thesehave beenusedsuccessfullyn orderto performor
optimizetaskssuchasdistancepreseration, classor clustersepara-
tion, correlationapproximationgtc. Thefollowing subsectionshav
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Fig. 8. Average outlier detection probabilities. In (a-d) the results involve
detecting the outlier with an extreme value, while in (e) and (f) the task
consist of nding the sample with low likelihood. The search for an
outlier can involve calculating the distance to the center of mass (mean)
of the plotted points, or to every other point in order to compute the
(maximum) distance to the nearest neighbor. In (a) and (b) the extreme
value of a single entry is 1000, while the data is later preprocessed to
lie in the [0,1] interval. With SC it is easier to detect the outlier, but
the performance drops quickly for both radial methods. In (c) and (d)
we use the original (standardized) data, and the incorporated extreme
value is 10. For RadViz we additionally shifted the data (by subtracting
the minimum attribute values) in order to make them nonnegative. In
this case the performance of the methods improves considerably, where
the average probabilities are again larger for SC. Finally, in (e) and (f)
we also preprocessed the data to lie in the [0,1] interval (we obtained
similar results with the original data). The performance is poor, and
almost identical, for both methods. The results correspond to basic SC
plots, Radviz, and the variant in [28] for outlier detection, denoted as
RadViz'.

several usesof this idea. In contrastthe inherentnonlineartransfor
mationin Rad\iz impedeseproducingheseusefulplots.

5.1 Classication and feature selection

In practiceit canbe dif cult to manuallyselecta setof axis vectors
in SC, or anchorpointsin Rad\Mz, in orderto separatelassesn the

obsenabledisplay A commonapproachin the literatureconsistsof

building regular con gurations,and permutingthe attributesin order
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Fig. 9. Plots for a regular arrangement of the 4 variables of the Iris
data set in RadViz (a), and SC (b). The lighter classes appear highly
overlapped, especially in RadViz, since the nonlinear step maps them
onto the same region of the 3-dimensional simplex (1"x = 1). Thus, there
does not exist a con gur ation of anchor points that will separate those
classes in RadViz.

to obtaindifferentviews of the data(see[3, 38]). However, the or-
deringof variablesin visualizationds complex andtime-consuming,
sincethe problemsto be solved are NP-hard,and thereforerequire
heuristicsgvenfor amoderateznumberof attributes(se€[ 2, 5]). More-
over, regular con gurationsare ofteninsufcient in orderto obtaina
satishctoryseparatiorof classe®n theplots. Figure9 shavs Rad\Miz
(a)andSC(b) plotsfor regulararrangementsf thefour variablegand
150 samplespf thelris datasetincludedin the UCI MachineLearn-
ing Repository[8]. The SC plot separate¢he lighter coloredclasses
betterthantheanalogouwsersionin Rad\Mz, but thereneverthelessx-
ists a clear overlap betweenthem. Other orderingsdo not separate
the classe®ither(seethe supplementamaterial).In this examplethe
high overlapin Rad\iz is dueto its nonlinearstep,which mapsthe
lighter coloredclasse®ntothe sameregion of the unit 3-dimensional
simplex, asshavn in (c). Thus,no matterwhich con guration of an-
chor pointswe choosethoseclassewill alwaysbe overlappingin a
Rad\z plot.

However, whenworking with SC, analystscantake adwantageof
the numerousdimensionalityreductionmethodsthat generatdinear
mappingsn orderto separatea setof classeptimally, accordingto
somecriterion. The matricesassociateavith thosemappingscanbe
computechutomaticallyandspecifythe setof axisvectorsto beused.
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Fig. 10. Optimal con gur ations in SC for separating the classes of the
Iris data set. In (a) the choice of axis vector produces the LDA plot,
while in (b) the plot corresponds to the LMNN mapping.
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Fig. 11. Automatic con gur ation of 7129 genes (the gray lines represent
the axis vectors) in a SC plot related to LDA. In the example, the data
samples of two classes of leukemia (11 cases of AML and 27 of ALL)
are clearly separated, and concentrated around two different points.

In SCit is straightforvardto obtaintheseaxisvectors.Considersome
linear transformatiorfrom R" to R™ de ned by someknown matrix
A, i.e.,p= Ax. Dueto (1) we cansimply setV = AT in orderto re-
producethe mapping. Thus,the axis vectorsare simply the columns
of A. Figure10 shaws the con gurationsof axis vectorsthatgener
ate (a) the LDA plot, and (b) the mappingassociatedvith the large
maugin nearesineighbor(LMNN) [43] method,for the Iris dataset.
Both plotsseparatehelighter classegonsiderablybetterthanregular
con gurations(seeFig. 9).

In Fig. 11 we appliedLDA to the Geneexpressiondatasetused
in [11], andanalyzedin [13] with Rad\Mz, in orderto separatdwo
classesf acutemyeloid leukemia (AML) and acutelymphoblastic
leukemia(ALL). Theresultingaxisvectors(V) areobtainedautomat-
ically throughthe well-known statisticalprocedure,and the datais
clearly separatedn the plot, wherethe classesare mappedaround
two differentpoints.

In certaintasksanalystsmay decideto simplify a visualizationby
discardingthe variablesthat do not have a relevant contrikution to it.
In SC short axis vectorsconstitutepossiblecandidatedo be elimi-
nated,sincethe effect of avariablein a plot depend®on thelengthof
its axis vector For instancewhenthe setof axis vectorsis obtained
throughthelinearmappingcorrespondingo amethodusedfor classi-
cation, it is possibleto performvisualfeatureselectionby discarding
variableswith shortvectors,sincethesecould be the leastdiscrimi-
native. Figure 12a shaws the con guration of axisvectorsassociated
with theLDA plot for the Wine datasetin [8], which containsl3 vari-
ablesand 178 samples.Sincethe threeclassef wine areseparated
well ontheplot, it maybe possibleto reducethe setof variableswhile
still avoiding classoverlaps.In (b) we have discardedsix of the orig-
inal variables(andreproducedhe LDA plot for theremainingseven),
which hadthe shorteraxis vectorsin (a). Note, however, thatif there
exist overlapsbetweerclassesshortvectorscouldplay arelevantrole
in the plot. This occursin Fig. 10a with the variable“sepallength”
(notethatits axisvectoris orientedin themaindirectionthatseparates
thelighter classes)or “sepalwidth” in (b).

Anotherapproactdesignedor Rad\Mz is the “classdiscrimination
layout” (CDL) algorithm[26], whichgroupssimilarvariablesnto sec-
torsaccordingo thet-statistic.Otherproceduresisequality measures
thatindicateclass(or cluster)separatiorin orderto selecthelocations
or orderingof theanchormoints. For instancetheapproactdescribed
in [1] usesanimageprocessinglgorithmin orderto separatelasses.
In Fig. 13 we shaw the resultof applyingthesemethodsto the Wine
dataset(the anchororderingin (b) is describedn [1]). In orderto
evaluateclassseparationve have followedtheapproachn [21], which
consistsof computingthe leave-one-outlassi cationperformancef
aK-nearesheighborslassi er, for K = 5 (this choicegenerallypro-
vided optimal scores).The errorratefor the SC plot relatedto LDA,
shavn in Fig. 12a, is not only muchlower, but the axis vectorsalso
revealtheimportanceof thevariablesin theplot.

Lastly, Fig. 14 shavs anotherclassi cationexampletakenfrom[1],
whichusegheOlives[45] datasetcontainings728-dimensionatam-
plesthat are categorizedin 9 classes.The error rate of a K-nearest
neighborclassi er (for K = 5), appliedto the optimal sectorpermuta-
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Fig. 12. Visual feature selection with SC. In (a) the con gur ation of axis
vectors produces the LDA plot for the Wine data set. The least discrimi-
native variables tend to have shorter vectors, and represent candidates
to be discarded when performing feature selection. In (b) a reduced set
of seven variables also separates the data well.

tion of the CDL algorithm,shavn in (a), is 12:41%. Note thatsince
the datasetcontains9 variables,thereare 8!=2 possiblesectorper
mutations. Since our implementationin MATLAB' takes about4
seconddo evaluatethe classi cationperformancesf onepermutation
(measurecn an PC with an Intel Core™ i7-4712HQCPU, 2.30
GHz,and16GBof RAM), thesearcHor theoptimalpermutatiortook
about22:4 hours. In addition, the error ratefor the classseparation
algorithmin [1], in (b), is 17:13% (zoomed-ingures areavailablein
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Fig. 13. RadViz class separation algorithms applied to the Wine data
set. The error rate of a K-nearest neighbor classi er (for K = 5), applied
to the optimal sector permutation of the CDL algorithm shown in (a), is
1346% The analogous error rate for the class separation algorithm in
[1], shown in (b), is 4:49% However, the error rate for the LDA plot in
Fig. 12a is reduced to 0:56%
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Fig. 14. Class separation algorithms applied to the Olives data set. The
error rate of a K-nearest neighbor classi er (for K = 5), applied to the op-
timal sector permutation of the CDL algorithm for RadViz, shown in (a),
is 1241% The analogous error rate for the class separation algorithm
for RadViz in [1], shown in (b), is 17:13% However, the combination of
NCA and LMNN for SC, shown in (c), can decrease the error rate to
6:29%
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Fig. 15. Con gur ation of axis vectors in SC (for the Iris data set) that
allows to estimate correlation coef cients as cosines of the angles be-
tween axis vectors.

the supplementataterial).

Finally, aninterestingpropertyaboutinearmapsis thatthey canbe
usedconsecutiely. In Fig. 14c we have usedneighborhoodcompo-
nentanalysis(NCA) [10] to mappointsonto a 2-dimensionakpace,
generatingg2 8 matrix A. Afterwardswe have appliedLMNN [43]
on the correspondingnappingthatprovidesa2 2 matrix B. Thus,
the columnsof matrix BA canbe usedto constructa SC plot. This
approachcanreducethe error considerably In 20 randomtrials the
averageerror ratewas 7:57%, wherethe minimum was 6:29%. The
combinationof bothapproachessing[24], togethemwith the classi -
cationperformancevaluation,took 4:14 second®on average.There-
fore, this approachis considerablymore ef cient than searchingfor
permutations.

Lastly, notethatothernonlineardimensionalityreductionmethods
could separatehe dataeven better However, thelinearmethodspro-
ducematricesfrom which we canextractthe SC axis vectors,which
canbe usefulfor understandingherole of theinitial variablesin the

nal visualization.

5.2 Biplots

Linearmapsareusefulfor otheranalysistasks.We concludethis sec-
tion with an exampleinvolving statisticalbiplots. Note thatanidea
oftenusedin visualizationshasedn radialaxesconsistof arranging
similar attributesnearby[2, 3]. For example,it is possibleto select
theaxisvectorsin SC,or theanchorpointsin Rad\Mz, in orderto ap-
proximatecorrelationcoefcients betweerthedatavariables.Thiscan
be carriedout with the aid of classicalstatisticalbiplots, which build
linear mappingsthat depictrepresentationsf both datasamplesand
variablesin a singlegraphic. In particular they factorthe bestrank-
2 approximatiorof thedata(accordingto the Frobeniugmatrix norm)
into two matricesghatrepresenthepointsandvariablesLet USW' be
thesingularvaluedecompositiorof theN  n datamatrix, whereN is
thecardinalityof thedataset. By choosingV asthe rst two columns
of SWT, theresultingSC plot canbeusedto estimatecorrelationcoef-
cients betweenvariablesasthe cosinebetweertheir respectie axis
vectors. Figure 15 shaws this plot for the Iris dataset, while Tah 1

shaws thedifferentcorrelationsandcosinevalues which aresimilar.

6 DATA ATTRIBUTE ESTIMATION

The mappingsde ned by SC and RadMz are not one-to-onesince
mary high-dimensionasamplesanbe projectedonto the samelow-
dimensionalpoint. Thus,whenthe samplesarerepresentedsdots,
informationis inevitably lost dueto the dimensionalityreductionpro-
cess. In this regard, anotherbene t of SC over Rad\Mz is relatedto
the ability to recover original high-dimensionaattribute valuesmore
accuratelysimply from thevisualelementsn the plots. In particular
theaxesin SC canbe labeled,similarly to statisticalbiplots,in order
to allow usersto estimatevaluesby projectingembeddedoints or-
thogonallyontothem. It canbe shavn that,in orderto obtainoptimal
estimatesusingthis approachthe datashouldbe centeredandmatrix
V shouldbe orthogonal32]. Figure16 shavs anexampleusingfour
standardizedariablesof the US breakhstcerealdatasetusedin [44]
(it contains77 sampleshut we discardedhe threethat have missing
values). In the example, the con guration of axis vectorsproduces
the PCA plot for the four attributes,whereunhealtly cerealsarerep-
resentecby pointson the right side of the plot, and healtty oneson
theleft. Thecaloriccontentfor a particularcerealcanbe estimatedy

Table 1. Correlation coef cients (r) and cosines between the axis vec-
tors in Fig. 15. Note the similarity between the values.

Variablei Variablej r cogVi; Vj)
sepallength sepalwidth -0.1094  -0.0541
sepallength petallength 0.8718 0.9237
sepallength petalwidth  0.8180 0.9357
sepalwidth  petallength -0.4205 -0.4324
sepalwidth  petalwidth -0.3565  -0.4029
petallength  petalwidth  0.9628 0.9995
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Fig. 16. Data attribute estimation in SC by projecting points orthogo-
nally onto labeled axes. In the example, the caloric content of breakfast
cereals can be estimated through projections onto the labeled axis. Ad-
ditionally, the size of the points is related to the quality of the estimates
(samples for which the estimates are accurate appear as larger dots).
The color bar is associated with caloric content.

projectingits correspondingoint onto the labeledaxis. Lastly, it is
possibleto shav the quality of the estimatesy meansof the size of
thepoints.

Thepreviousapproactonly requiresmodifyingtheaxisvectorsand
centeringhedata.In contrastthenormalizationstepin Rad\Mz trans-
forms the dataso thatthe sumof its elementss 1, which obviously
eliminatesinformation aboutthe original attribute values. Thus, re-
gardlessof the placementf theanchorpointsanddatatranslationjn
Rad\Mz userscantry to comparewvhetheran attribute valueis greater
for a samplethanfor anothey but cannotestimateexact original val-
ues.

Lastly, for ary dimensionalityreductionmethodoneway to visual-
ize theexactattribute valuesconsistf representinghe mappedsam-
plesasglyphsor similar visual structureqsee[40]) insteadof points.
However, this canonly be carriedout effectively for alow numberof
variablesanddatasamplessinceotherwisethe plots would exhibit a
considerableverlap.

7 ARBITRARY LAYOUTS

In SC,userscanarrangeheaxisvectorsinteractiely in arbitrarylay-
outsin orderto searchfor datawith particularcharacteristicsgluster
structurepr outliers(se€ 20, 44]). However, theanchorpointsin Rad-
Viz areusuallyarrangedsothatall of themform partof their corvex
hull. Althoughthisis notstrictly necessaryt is appropriatén orderto
analyzesparsealataeffectively. In addition,smallcornvex hulls maybe
problematic sincethe mappedpointsarealwayslocatedinsidethem.
Thus, we considerSC to be more e xible regarding userinteraction
andthe numberof layouts(i.e., views of the data)for the variableson
theplots.

Figure 17 shovs Rad\Mz visualizationsfor the datasetusedin the
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Fig. 17. RadViz applied to the data set used in Fig. 16. In (a) the anchor
points are the same as in the SC plot. Their convex hull is small and
the ordering of the caloric content is degraded. In (b) the related regular
layout does not solve the problem.

SCplotin Fig. 16, whereall of theaxisvectorspointto the samehalf-

space(in part, becauseall of the variablesare positively correlated,
which occursin mary datasets). Note thatit is usefulto arrangethe

variablesin thatmanneiin SCin orderto characterizdealtty vs. un-

healtty cereals.However, it is dif cult to accomplishthis effectively

in RadMz with thosefour variablessince points are pulled towards
verticesof the corvex hull, which cannotall have similar directions.
Thus, it is not possibleto positionthe anchorsn orderto detectdata
samplesith large (or small)valuesfor all attributes.In (a) theanchor
pointsv; arethesameasin the SCplot. TheresultingRad\Mz visual-

izationis considerablydifferent. On the onehand,the corvex hull is

particularlysmall. On the otherhand,the orderingof the caloriccon-

tent, which wasapparenin the SC plot, is now degraded.In (b) we

have updatedheanchomointsin orderto form aregularlayout,while

preservingtheir relative orderingon the corvex hull. In spite of this

changethe mappediatapointsremainclearly unorderedvith respect
to their caloriccontent.

8 CONCLUSIONS

This paperhascomparedsCandRad\Mz focusingon the effect of the
latter's extra nonlinearnormalizationstep, which is the main differ-
encebetweenthem. We concludethat Rad\Mz is especiallyadvanta-
geouswhenthe datais sparseasin [13, 37]. However, we have pro-
vided new resultsshaving that its nonlinearitymay hamperseveral
otherexploratoryanalysigtasks.

9 DiscussION

Reagardingthe developmentof algorithms,mary designedor Rad\Miz

canalsobe appliedto SC. For instance quality measureshiave been
usedto accomplishtaskssuchasclassseparatiorin RadMz [1]. Since
thesemeasuresiregeneralthey canbe appliedto SCaswell (andto

otherdimensionalityreductionmethods). Therefore, when develop-
ing algorithmsfor Rad\Mz, we recommencdtonsideringwhetherthey

would alsobeappropriatdor SC.

Regarding performanceSC and Rad\iz are equivalentsinceboth
computethe mappingof adatasamplein Q(n) time (necessaryo cal-
culatethe productof a2 n matrix timesan n-dimensionalector).
Radvizalsorequirescalculatingthe sumof the attribute valuesof the
samplesbut this doesnotincreasehecomputationatomplexity since
it is alsocarriedoutin Q(n) time. Thus,for a datasetof cardinality
N, bothmethodgyeneratelotsin Q(Nn) time,andscalewell evenfor
very large datasets.

A commonlimitation of both methodsis the dif culty to recover
original dataattributes,which canbemitigatedin SC(seeSec.6). Ad-
ditionally, while moderndimensionalityreductionmethodshave been
designedo capturenonlinearstructureof manifoldsin the data,the
methodaunderstudyarenot capableof carryingout this task. On the
onehand,SCis alinearmethod.On the other Rad\Mz de nesagen-
eralnonlinearmappingthatdoesnot consideithe shapeor distribution
of thedata(i.e.,therelationshipbetweerthesamples) Thus,it is also
incapableof revealingstructureof manifoldsin the data.

Lastly, we have performedan objective comparisorof Rad\iz and
SC basedon theoreticalanalysesand experimentsin which we have
obtainedresultsautomatically e.g., by modelinguserbehaior (see
Sec.4), or throughcomputationaproceduregseeSec.5). In thisre-
gard, we are planningon performingusertestsasa future work; for
instancejn orderto analyzeinteraction,andthe ability to detectcer
tain patternsgdistributions,or correlationgsee[16, 22).
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